3,666 research outputs found

    Off-line Signature Verification Based on Fusion of Grid and Global Features Using Neural Networks

    Get PDF
    Signature is widely used and developed area of research for personal verification and authentication. In this paper Off-line Signature Verification Based on Fusion of Grid and Global Features Using Neural Networks (SVFGNN) is presented. The global and grid features are fused to generate set of features for the verification of signature. The test signature is compared with data base signatures based on the set of features and match/non match of signatures is decided with the help of Neural Network. The performance analysis is conducted on random, unskilled and skilled signature forgeries along with genuine signatures. It is observed that FAR and FRR results are improved in the proposed method compared to the existing algorithm

    Feature Representation for Online Signature Verification

    Full text link
    Biometrics systems have been used in a wide range of applications and have improved people authentication. Signature verification is one of the most common biometric methods with techniques that employ various specifications of a signature. Recently, deep learning has achieved great success in many fields, such as image, sounds and text processing. In this paper, deep learning method has been used for feature extraction and feature selection.Comment: 10 pages, 10 figures, Submitted to IEEE Transactions on Information Forensics and Securit

    Building a Strong Undergraduate Research Culture in African Universities

    Get PDF
    Africa had a late start in the race to setting up and obtaining universities with research quality fundamentals. According to Mamdani [5], the first colonial universities were few and far between: Makerere in East Africa, Ibadan and Legon in West Africa. This last place in the race, compared to other continents, has had tremendous implications in the development plans for the continent. For Africa, the race has been difficult from a late start to an insurmountable litany of problems that include difficulty in equipment acquisition, lack of capacity, limited research and development resources and lack of investments in local universities. In fact most of these universities are very recent with many less than 50 years in business except a few. To help reduce the labor costs incurred by the colonial masters of shipping Europeans to Africa to do mere clerical jobs, they started training ―workshops‖ calling them technical or business colleges. According to Mamdani, meeting colonial needs was to be achieved while avoiding the ―Indian disease‖ in Africa -- that is, the development of an educated middle class, a group most likely to carry the virus of nationalism. Upon independence, most of these ―workshops‖ were turned into national ―universities‖, but with no clear role in national development. These national ―universities‖ were catering for children of the new African political elites. Through the seventies and eighties, most African universities were still without development agendas and were still doing business as usual. Meanwhile, governments strapped with lack of money saw no need of putting more scarce resources into big white elephants. By mid-eighties, even the UN and IMF were calling for a limit on funding African universities. In today‘s African university, the traditional curiosity driven research model has been replaced by a market-driven model dominated by a consultancy culture according to Mamdani (Mamdani, Mail and Guardian Online). The prevailing research culture as intellectual life in universities has been reduced to bare-bones classroom activity, seminars and workshops have migrated to hotels and workshop attendance going with transport allowances and per diems (Mamdani, Mail and Guardian Online). There is need to remedy this situation and that is the focus of this paper

    Signature Verification Using Siamese Convolutional Neural Networks

    Get PDF
    This research entails the processes undergone in building a Siamese Neural Network for Signature Verification. This Neural Network which uses two similar base neural networks as its underlying architecture was built, trained and evaluated in this project. The base networks were made up of two similar convolutional neural networks sharing the same weights during training. The architecture commonly known as the Siamese network helped reduce the amount of training data needed for its implementation and thus increased the model’s efficiency by 13%. The convolutional network was made up of three convolutional layers, three pooling layers and one fully connected layer onto which the final results were passed to the contrastive loss function for comparison. A threshold function determined if the signatures were forged or not. An accuracy of 78% initially achieved led to the tweaking and improvement of the model to achieve a better prediction accuracy of 93%

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study
    • …
    corecore