138 research outputs found

    Tyler's Covariance Matrix Estimator in Elliptical Models with Convex Structure

    Full text link
    We address structured covariance estimation in elliptical distributions by assuming that the covariance is a priori known to belong to a given convex set, e.g., the set of Toeplitz or banded matrices. We consider the General Method of Moments (GMM) optimization applied to robust Tyler's scatter M-estimator subject to these convex constraints. Unfortunately, GMM turns out to be non-convex due to the objective. Instead, we propose a new COCA estimator - a convex relaxation which can be efficiently solved. We prove that the relaxation is tight in the unconstrained case for a finite number of samples, and in the constrained case asymptotically. We then illustrate the advantages of COCA in synthetic simulations with structured compound Gaussian distributions. In these examples, COCA outperforms competing methods such as Tyler's estimator and its projection onto the structure set.Comment: arXiv admin note: text overlap with arXiv:1311.059

    A Compact Formulation for the β„“2,1\ell_{2,1} Mixed-Norm Minimization Problem

    Full text link
    Parameter estimation from multiple measurement vectors (MMVs) is a fundamental problem in many signal processing applications, e.g., spectral analysis and direction-of- arrival estimation. Recently, this problem has been address using prior information in form of a jointly sparse signal structure. A prominent approach for exploiting joint sparsity considers mixed-norm minimization in which, however, the problem size grows with the number of measurements and the desired resolution, respectively. In this work we derive an equivalent, compact reformulation of the β„“2,1\ell_{2,1} mixed-norm minimization problem which provides new insights on the relation between different existing approaches for jointly sparse signal reconstruction. The reformulation builds upon a compact parameterization, which models the row-norms of the sparse signal representation as parameters of interest, resulting in a significant reduction of the MMV problem size. Given the sparse vector of row-norms, the jointly sparse signal can be computed from the MMVs in closed form. For the special case of uniform linear sampling, we present an extension of the compact formulation for gridless parameter estimation by means of semidefinite programming. Furthermore, we derive in this case from our compact problem formulation the exact equivalence between the β„“2,1\ell_{2,1} mixed-norm minimization and the atomic-norm minimization. Additionally, for the case of irregular sampling or a large number of samples, we present a low complexity, grid-based implementation based on the coordinate descent method

    Interpolation and Extrapolation of Toeplitz Matrices via Optimal Mass Transport

    Full text link
    In this work, we propose a novel method for quantifying distances between Toeplitz structured covariance matrices. By exploiting the spectral representation of Toeplitz matrices, the proposed distance measure is defined based on an optimal mass transport problem in the spectral domain. This may then be interpreted in the covariance domain, suggesting a natural way of interpolating and extrapolating Toeplitz matrices, such that the positive semi-definiteness and the Toeplitz structure of these matrices are preserved. The proposed distance measure is also shown to be contractive with respect to both additive and multiplicative noise, and thereby allows for a quantification of the decreased distance between signals when these are corrupted by noise. Finally, we illustrate how this approach can be used for several applications in signal processing. In particular, we consider interpolation and extrapolation of Toeplitz matrices, as well as clustering problems and tracking of slowly varying stochastic processes
    • …
    corecore