90 research outputs found

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Performance enhancement for LTE and beyond systems

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of PhilosophyWireless communication systems have undergone fast development in recent years. Based on GSM/EDGE and UMTS/HSPA, the 3rd Generation Partnership Project (3GPP) specified the Long Term Evolution (LTE) standard to cope with rapidly increasing demands, including capacity, coverage, and data rate. To achieve this goal, several key techniques have been adopted by LTE, such as Multiple-Input and Multiple-Output (MIMO), Orthogonal Frequency-Division Multiplexing (OFDM), and heterogeneous network (HetNet). However, there are some inherent drawbacks regarding these techniques. Direct conversion architecture is adopted to provide a simple, low cost transmitter solution. The problem of I/Q imbalance arises due to the imperfection of circuit components; the orthogonality of OFDM is vulnerable to carrier frequency offset (CFO) and sampling frequency offset (SFO). The doubly selective channel can also severely deteriorate the receiver performance. In addition, the deployment of Heterogeneous Network (HetNet), which permits the co-existence of macro and pico cells, incurs inter-cell interference for cell edge users. The impact of these factors then results in significant degradation in relation to system performance. This dissertation aims to investigate the key techniques which can be used to mitigate the above problems. First, I/Q imbalance for the wideband transmitter is studied and a self-IQ-demodulation based compensation scheme for frequencydependent (FD) I/Q imbalance is proposed. This combats the FD I/Q imbalance by using the internal diode of the transmitter and a specially designed test signal without any external calibration instruments or internal low-IF feedback path. The instrument test results show that the proposed scheme can enhance signal quality by 10 dB in terms of image rejection ratio (IRR). In addition to the I/Q imbalance, the system suffers from CFO, SFO and frequency-time selective channel. To mitigate this, a hybrid optimum OFDM receiver with decision feedback equalizer (DFE) to cope with the CFO, SFO and doubly selective channel. The algorithm firstly estimates the CFO and channel frequency response (CFR) in the coarse estimation, with the help of hybrid classical timing and frequency synchronization algorithms. Afterwards, a pilot-aided polynomial interpolation channel estimation, combined with a low complexity DFE scheme, based on minimum mean squared error (MMSE) criteria, is developed to alleviate the impact of the residual SFO, CFO, and Doppler effect. A subspace-based signal-to-noise ratio (SNR) estimation algorithm is proposed to estimate the SNR in the doubly selective channel. This provides prior knowledge for MMSE-DFE and automatic modulation and coding (AMC). Simulation results show that this proposed estimation algorithm significantly improves the system performance. In order to speed up algorithm verification process, an FPGA based co-simulation is developed. Inter-cell interference caused by the co-existence of macro and pico cells has a big impact on system performance. Although an almost blank subframe (ABS) is proposed to mitigate this problem, the residual control signal in the ABS still inevitably causes interference. Hence, a cell-specific reference signal (CRS) interference cancellation algorithm, utilizing the information in the ABS, is proposed. First, the timing and carrier frequency offset of the interference signal is compensated by utilizing the cross-correlation properties of the synchronization signal. Afterwards, the reference signal is generated locally and channel response is estimated by making use of channel statistics. Then, the interference signal is reconstructed based on the previous estimate of the channel, timing and carrier frequency offset. The interference is mitigated by subtracting the estimation of the interference signal and LLR puncturing. The block error rate (BLER) performance of the signal is notably improved by this algorithm, according to the simulation results of different channel scenarios. The proposed techniques provide low cost, low complexity solutions for LTE and beyond systems. The simulation and measurements show good overall system performance can be achieved

    I/Q imbalance mitigation for space-time block coded communication systems

    Get PDF
    Multiple-input multiple-output (MIMO) space-time block coded (STBC) wireless communication systems provide reliable data transmissions by exploiting the spatial diversity in fading channels. However, due to component imperfections, the in-phase/quadrature (I/Q) imbalance caused by the non-ideal matching between the relative amplitudes and phases of the I and Q branches always exists in the practical implementation of MIMO STBC communication systems. Such distortion results in a complex conjugate term of the intended signal in the time domain, hence a mirror-image term in the frequency domain, in the data structure. Consequently, I/Q imbalance increases the symbol error rate (SER) drastically in MIMO STBC or STBC MIMO orthogonal frequency division multiplexing (OFDM) communication systems, where both the signal and its complex conjugate are utilized for the information transmission, hence should be mitigated effectively. In this dissertation, the impact of I/Q imbalance in MIMO STBC systems over flat fading channels, the impact of I/Q imbalance in STBC MIMO-OFDM systems and in time- reversal STBC (TR-STBC) systems over frequency-selective fading channels are studied systematically. With regard to the MIMO STBC and the STBC MIMO-OFDM systems with I/Q imbalance, orthogonal space-time block codes (OSTBCs), quasi-orthogonal STBCs (QOSTBCs) and rotated QOSTBCs (RQOSTBCs) are studied, respectively. By exploiting the special structure of the received signal, low-complexity solutions are provided to mitigate the distortion induced by I/Q imbalance successfully. In addition, to mitigate I/Q imbalance while at the same time to exploit the multipath diversity for STBC OFDM systems over frequency-selective fading channels, a new encoding/decoing scheme for the grouped linear constellation precoded (GLCP) OFDM systems with I/Q imbalance is studied. In Chapter 1, the objectives of the research are elaborated. In Chapter 2, the various I/Q imbalance models are introduced, and the model used in this dissertation is established. In Chapter 3, the performance degradation caused by I/Q imbalance of the transceivers in MIMO STBC wireless communication systems over flat fading channels and the solutions are studied. A 2 Tx Alamouti system, a 4 Tx quasi-orthogonal STBC (QOSTBC) system, and a 4 Tx rotated QOSTBC (RQOSTBC) system with I/Q imbalance are studied in detail. By exploiting the special structure of the received signal, low-complexity solutions are proposed to mitigate I/Q imbalance successfully. Since STBCs are developed for frequency-flat fading channels, to achieve the spatial diversity in frequency-selective fading channels, MIMO-OFDM arrangements have been suggested, where STBCs are used across different antennas in conjunction with OFDM. In Chapter 4, the performance degradation caused by I/Q imbalance in STBC MIMO-OFDM wireless systems over frequency-selective fading channels and the solutions are studied. Similarly, a 2 Tx Alamouti system, a 4 Tx quasi-orthogonal STBC (QOSTBC) system, and a 4 Tx rotated QOSTBC (RQOSTBC) system with I/Q imbalance are studied in detail, and low-complexity solutions are proposed to mitigate the distortion effectively. However, OFDM systems suffer from the loss of the multipath diversity by converting frequency-selective fading channels into parallel frequency-flat fading subchannels. To exploit the multipath diversity and reduce the decoding complexity, GLCP OFDM systems with I/Q imbalance are studied. By judiciously assigning the mirror-subcarrier pair into one group, a new encoding/decoding scheme with a low-complexity is proposed to mitigate I/Q imbalance for GLCP OFDM systems in Chapter 5. Since OFDM communication systems have high peak-to-average power ratio (PAPR) problem and are sensitive to carrier frequency offset (CFO), to achieve both the spatial and multipath diversity, time-reversal STBC (TR-STBC) communication systems are introduced. In Chapter 6, the I/Q imbalance mitigating solutions in TR-STBC systems, both in the time domain and in the frequency domain, are studied

    Periodic Preamble-Based Frequency Recovery in OFDM Receivers Plagued by I/Q Imbalance

    Get PDF
    The direct conversion receiver (DCR) architecture has received much attention in the last few years as an effective means to obtain user terminals with reduced cost, size, and power consumption. A major drawback of a DCR device is the possible insertion of I/Q imbalances in the demodulated signal, which can seriously degrade the performance of conventional synchronization algorithms. In this paper, we investigate the problem of carrier frequency offset (CFO) recovery in an OFDM receiver equipped with a DCR front-end. Our approach is based on maximum likelihood (ML) arguments and aims at jointly estimating the CFO, the useful signal component, and its mirror image. In doing so, we exploit knowledge of the pilot symbols transmitted within a conventional repeated training preamble appended in front of each data packet. Since the exact ML solution turns out to be too complex for practical purposes, we propose two alternative schemes which can provide nearly optimal performance with substantial computational saving. One of them provides the CFO in closed-form, thereby avoiding any grid-search procedure. The accuracy of the proposed methods is assessed in a scenario compliant with the 802.11a WLAN standard. Compared with existing solutions, the novel schemes achieve improved performance at the price of a tolerable increase of the processing load

    Frequency Estimation in OFDM Direct-Conversion Receivers Using a Repeated Preamble

    Get PDF
    This paper investigates the problem of carrier frequency offset (CFO) recovery in an OFDM receiver affected by frequency-selective in-phase/quadrature (I/Q) imbalances. The analysis is based on maximum-likelihood (ML) methods and relies on the transmission of a training preamble with a repetitive structure in the time domain. After assessing the accuracy of the conventional ML (CML) scheme in a scenario characterized by I/Q impairments, we review the joint ML (JML) estimator of all unknown parameters and evaluate its theoretical performance. In order to improve the estimation accuracy, we also present a novel CFO recovery method that exploits some side-information about the signal-to-interference ratio. It turns out that both CML and JML can be derived from this scheme by properly adjusting the value of a design parameter. The accuracy of the investigated methods are compared with the relevant Cramer-Rao bound. Our results can be used to check whether conventional CFO recovery algorithms can work properly or not in the presence of I/Q imbalances and also to evaluate the potential gain attainable by more sophisticated schemes

    Modeling and Digital Mitigation of Transmitter Imperfections in Radio Communication Systems

    Get PDF
    To satisfy the continuously growing demands for higher data rates, modern radio communication systems employ larger bandwidths and more complex waveforms. Furthermore, radio devices are expected to support a rich mixture of standards such as cellular networks, wireless local-area networks, wireless personal area networks, positioning and navigation systems, etc. In general, a "smart'' device should be flexible to support all these requirements while being portable, cheap, and energy efficient. These seemingly conflicting expectations impose stringent radio frequency (RF) design challenges which, in turn, call for their proper understanding as well as developing cost-effective solutions to address them. The direct-conversion transceiver architecture is an appealing analog front-end for flexible and multi-standard radio systems. However, it is sensitive to various circuit impairments, and modern communication systems based on multi-carrier waveforms such as Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Division Multiple Access (OFDMA) are particularly vulnerable to RF front-end non-idealities.This thesis addresses the modeling and digital mitigation of selected transmitter (TX) RF impairments in radio communication devices. The contributions can be divided into two areas. First, new modeling and digital mitigation techniques are proposed for two essential front-end impairments in direct-conversion architecture-based OFDM and OFDMA systems, namely inphase and quadrature phase (I/Q) imbalance and carrier frequency offset (CFO). Both joint and de-coupled estimation and compensation schemes for frequency-selective TX I/Q imbalance and channel distortions are proposed for OFDM systems, to be adopted on the receiver side. Then, in the context of uplink OFDMA and Single Carrier FDMA (SC-FDMA), which are the air interface technologies of the 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) and LTE-Advanced systems, joint estimation and equalization techniques of RF impairments and channel distortions are proposed. Here, the challenging multi-user uplink scenario with unequal received power levels is investigated where I/Q imbalance causes inter-user interference. A joint mirror subcarrier processing-based minimum mean-square error (MMSE) equalizer with an arbitrary number of receiver antennas is formulated to effectively handle the mirror sub-band users of different power levels. Furthermore, the joint channel and impairments filter responses are efficiently approximated with polynomial-based basis function models, and the parameters of basis functions are estimated with the reference signals conforming to the LTE uplink sub-frame structure. The resulting receiver concept adopting the proposed techniques enables improved link performance without modifying the design of RF transceivers.Second, digital baseband mitigation solutions are developed for the TX leakage signal-induced self-interference in frequency division duplex (FDD) transceivers. In FDD transceivers, a duplexer is used to connect the TX and receiver (RX) chains to a common antenna while also providing isolation to the receiver chain against the powerful transmit signal. In general, the continuous miniaturization of hardware and adoption of larger bandwidths through carrier aggregation type noncontiguous allocations complicates achieving sufficient TX-RX isolation. Here, two different effects of the transmitter leakage signal are investigated. The first is TX out-of-band (OOB) emissions and TX spurious emissions at own receiver band, due to the transmitter nonlinearity, and the second is nonlinearity of down-converter in the RX that generates second-order intermodulation distortion (IMD2) due to the TX in-band leakage signal. This work shows that the transmitter leakage signal-induced interference depends on an equivalent leakage channel that models the TX path non-idealities, duplexer filter responses, and the RX path non-idealities. The work proposes algorithms that operate in the digital baseband of the transceiver to estimate the TX-RX non-idealities and the duplexer filter responses, and subsequently regenerating and canceling the self-interference, thereby potentially relaxing the TX-RX isolation requirements as well as increasing the transceiver flexibility.Overall, this thesis provides useful signal models to understand the implications of different RF non-idealities and proposes compensation solutions to cope with certain RF impairments. This is complemented with extensive computer simulations and practical RF measurements to validate their application in real-world radio transceivers

    Compensation of Physical Impairments in Multi-Carrier Communications

    Get PDF
    Among various multi-carrier transmission techniques, orthogonal frequency-division multiplexing (OFDM) is currently a popular choice in many wireless communication systems. This is mainly due to its numerous advantages, including resistance to multi-path distortions by using the cyclic prefix (CP) and a simple one-tap channel equalization, and efficient implementations based on the fast Fourier and inverse Fourier transforms. However, OFDM also has disadvantages which limit its use in some applications. First, the high out-of-band (OOB) emission in OFDM due to the inherent rectangular shaping filters poses a challenge for opportunistic and dynamic spectrum access where multiple users are sharing a limited transmission bandwidth. Second, a strict orthogonal synchronization between sub-carriers makes OFDM less attractive in low-power communication systems. Furthermore, the use of the CP in OFDM reduces the spectral efficiency and thus it may not be suitable for short-packet and low-latency transmission applications. Generalized frequency division multiplexing (GFDM) and circular filter-bank multi-carrier offset quadrature amplitude modulation (CFBMC-OQAM) have recently been considered as alternatives to OFDM for the air interface of wireless communication systems because they can overcome certain disadvantages in OFDM. Specifically, these two systems offer a flexibility in choosing the shaping filters so that the high OOB emission in OFDM can be avoided. Moreover, the strict orthogonality requirement in OFDM is relaxed in GFDM and CFBMC-OQAM which are, respectively, non-orthogonal and real-field orthogonal systems. Although a CP is also used in these two systems, the CP is added for a block of many symbols instead of only one symbol as in OFDM, which, therefore, improves the spectral efficiency. Given that the performance of a wireless communication system is affected by various physical impairments such as phase noise (PN), in-phase and quadrature (IQ) imbalance and imperfect channel estimation, this thesis proposes a number of novel signal processing algorithms to compensate for physical impairments in multi-carrier communication systems, including OFDM, GFDM and CFBMC-OQAM. The first part of the thesis examines the use of OFDM in full-duplex (FD) communication under the presence of PN, IQ imbalance and nonlinearities. FD communication is a promising technique since it can potentially double the spectral efficiency of the conventional half-duplex (HD) technique. However, the main challenge in implementing an FD wireless device is to cope with the self-interference (SI) imposed by the device's own transmission. The implementation of SI cancellation (SIC) faces many technical issues due to the physical impairments. In this part of research, an iterative algorithm is proposed in which the SI cancellation and detection of the desired signal benefit from each other. Specifically, in each iteration, the SI cancellation performs a widely linear estimation of the SI channel and compensates for the physical impairments to improve the detection performance of the desired signal. The detected desired signal is in turn removed from the received signal to improve SI channel estimation and SI cancellation in the next iteration. Results obtained show that the proposed algorithm significantly outperforms existing algorithms in SI cancellation and detection of the desired signal. In the next part of the thesis, the impact of PN and its compensation for CFBMC-OQAM systems are considered. The sources of performance degradation are first quantified. Then, a two-stage PN compensation algorithm is proposed. In the first stage, the channel frequency response and PN are estimated based on the transmission of a preamble, which is designed to minimize the channel mean squared error (MSE). In the second stage the PN compensation is performed using the estimate obtained from the first stage together with the transmitted pilot symbols. Simulation results obtained under practical scenarios show that the proposed algorithm effectively estimates the channel frequency response and compensates for the PN. The proposed algorithm is also shown to outperform an existing algorithm that implements iterative PN compensation when the PN impact is high. As a further development from the second part, the third part of the thesis considers the impacts of both PN and IQ imbalance and proposes a unified two-stage compensation algorithm for a general multi-carrier system, which can include OFDM, GFDM and CFBMC-OQAM. Specifically, in the first stage, the channel impulse response and IQ imbalance parameters are first estimated based on the transmission of a preamble. Given the estimates obtained from the first stage, in the second stage the IQ imbalance and PN are compensated in that order based on the pilot symbols for the rest of data transmission blocks. The preamble is designed such that the estimation of IQ imbalance does not depend on the channel and PN estimation errors. The proposed algorithm is then further extended to a multiple-input multiple-output (MIMO) system. For such a MIMO system, the preamble design is generalized so that the multiple IQ imbalances as well as channel impulse responses can be effectively estimated based on a single preamble block. Simulation results are presented and discussed in a variety of scenarios to show the effectiveness of the proposed algorithm
    • …
    corecore