33 research outputs found

    Visual 3-D SLAM from UAVs

    Get PDF
    The aim of the paper is to present, test and discuss the implementation of Visual SLAM techniques to images taken from Unmanned Aerial Vehicles (UAVs) outdoors, in partially structured environments. Every issue of the whole process is discussed in order to obtain more accurate localization and mapping from UAVs flights. Firstly, the issues related to the visual features of objects in the scene, their distance to the UAV, and the related image acquisition system and their calibration are evaluated for improving the whole process. Other important, considered issues are related to the image processing techniques, such as interest point detection, the matching procedure and the scaling factor. The whole system has been tested using the COLIBRI mini UAV in partially structured environments. The results that have been obtained for localization, tested against the GPS information of the flights, show that Visual SLAM delivers reliable localization and mapping that makes it suitable for some outdoors applications when flying UAVs

    Present and Future of SLAM in Extreme Underground Environments

    Full text link
    This paper reports on the state of the art in underground SLAM by discussing different SLAM strategies and results across six teams that participated in the three-year-long SubT competition. In particular, the paper has four main goals. First, we review the algorithms, architectures, and systems adopted by the teams; particular emphasis is put on lidar-centric SLAM solutions (the go-to approach for virtually all teams in the competition), heterogeneous multi-robot operation (including both aerial and ground robots), and real-world underground operation (from the presence of obscurants to the need to handle tight computational constraints). We do not shy away from discussing the dirty details behind the different SubT SLAM systems, which are often omitted from technical papers. Second, we discuss the maturity of the field by highlighting what is possible with the current SLAM systems and what we believe is within reach with some good systems engineering. Third, we outline what we believe are fundamental open problems, that are likely to require further research to break through. Finally, we provide a list of open-source SLAM implementations and datasets that have been produced during the SubT challenge and related efforts, and constitute a useful resource for researchers and practitioners.Comment: 21 pages including references. This survey paper is submitted to IEEE Transactions on Robotics for pre-approva

    Optimisation of Rail-road Level Crossing Closing Time in a Heterogenous Railway Traffic: Towards Safety Improvement - South African Case Study

    Get PDF
    The gravitation towards mobility-as-a service in railway transportation system can be achieved at low cost and effort using shared railway network. However, the problem with shared networks is the presence of the level crossings where railway and road traffic intersects. Thus, long waiting time is expected at the level crossings due to the increase in traffic volume and heterogeneity. Furthermore, safety and capacity can be severely compromised by long level crossing closing time. The emphasis of this study is to optimise the rail-road level crossing closing time in order to achieve improved safety and capacity in a heterogeneous railway network. It is imperative to note that rail-road level crossing system assumes the socio-technical and safety critical duality which often impedes improvement efforts. Therefore, thorough understanding of the factors with highest influence on the level crossing closing time is required. Henceforth, data analysis has been conducted on eight active rail-road level crossings found on the southern corridor of the Western Cape metro rail. The spatial, temporal and behavioural analysis was conducted to extract features with influence on the level crossing closing time. Convex optimisation with the objective to minimise the level crossing closing time is formulated taking into account identified features. Moreover, the objective function is constrained by the train's traction characteristics along the constituent segments of the rail-road level crossing, speed restriction and headway time. The results show that developed solution guarantees at most 53.2% and 62.46% reduction in the level crossing closing time for the zero and nonzero dwell time, respectively. Moreover, the correctness of the presented solution has been validated based on the time lost at the level crossing and railway traffic capacity consumption. Thus, presented solution has been proven to achieve at most 50% recovery of the time lost per train trip and at least 15% improvement in capacity under normal conditions. Additionally, 27% capacity improvement is achievable at peak times and can increase depending on the severity of the headway constraints. However, convex optimisation of the level crossing closing time still fall short in level crossing with nonzero dwell time due to the approximation of dwell time based on the anticipated rather than actual value

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Модальне керування рухом автомобіля

    Get PDF
    Розроблено і досліджено систему автоматичного керування автомобілем для забезпечення безпечного руху. Методами модального керування синтезовано закони керування та отримано структурні схеми системи. Проведено моделювання системи в пакеті SIMULINK при типових збуреннях. Досліджено вплив шумів та інерційності вимірювальних пристроїв.This paper deals with the system of automatic car control to ensure safety traffic. The cruise control system is designed utilizing the standard coefficients and incorporating the mathematical models of modal control. The automatic control system is simulated in SIMULINK. Moreover, we study the step response of this system taking into account white noise and inertia of the measuring instruments.Разработана и исследована система автоматического управления автомобилем для обеспечения безопасного движения. Методами модального управления синтезированы законы управления и получены структурные схемы системы. Проведено моделирование системы управления в пакете SIMULINK при типовых воздействиях. Исследовано влияние шумов и инерционности измерительных устройств

    A hybrid approach to simultaneous localization and mapping in indoors environment

    Get PDF
    This thesis will present SLAM in the current literature to benefit from then it will present the investigation results for a hybrid approach used where different algorithms using laser, sonar, and camera sensors were tested and compared. The contribution of this thesis is the development of a hybrid approach for SLAM that uses different sensors and where different factors are taken into consideration such as dynamic objects, and the development of a scalable grid map model with new sensors models for real time update of the map.The thesis will show the success found, difficulties faced and limitations of the algorithms developed which were simulated and experimentally tested in an indoors environment
    corecore