304 research outputs found

    Linkless octree using multi-level perfect hashing

    Get PDF
    The standard C/C++ implementation of a spatial partitioning data structure, such as octree and quadtree, is often inefficient in terms of storage requirements particularly when the memory overhead for maintaining parent-to-child pointers is significant with respect to the amount of actual data in each tree node. In this work, we present a novel data structure that implements uniform spatial partitioning without storing explicit parent-to-child pointer links. Our linkless tree encodes the storage locations of subdivided nodes using perfect hashing while retaining important properties of uniform spatial partitioning trees, such as coarse-to-fine hierarchical representation, efficient storage usage, and efficient random accessibility. We demonstrate the performance of our linkless trees using image compression and path planning examples.postprin

    Source coding for transmission of reconstructed dynamic geometry: a rate-distortion-complexity analysis of different approaches

    Get PDF
    Live 3D reconstruction of a human as a 3D mesh with commodity electronics is becoming a reality. Immersive applications (i.e. cloud gaming, tele-presence) benefit from effective transmission of such content over a bandwidth limited link. In this paper we outline different approaches for compressing live reconstructed mesh geometry based on distributing mesh reconstruction functions between sender and receiver. We evaluate rate-performance-complexity of different configurations. First, we investigate 3D mesh compression methods (i.e. dynamic/static) from MPEG-4. Second, we evaluate the option of using octree based point cloud compression and receiver side surface reconstruction

    Exploiting coherence in time-varying voxel data

    Get PDF
    We encode time-varying voxel data for efficient storage and streaming. We store the equivalent of a separate sparse voxel octree for each frame, but utilize both spatial and temporal coherence to reduce the amount of memory needed. We represent the time-varying voxel data in a single directed acyclic graph with one root per time step. In this graph, we avoid storing identical regions by keeping one unique instance and pointing to that from several parents. We further reduce the memory consumption of the graph by minimizing the number of bits per pointer and encoding the result into a dense bitstream

    A New 3D Representation and Compression Algorithm for Non-Rigid Moving Objects using Affine-Octree

    Get PDF
    This paper presents a new 3D representation for non-rigid objects using motion vectors between two consecutive frames. Our method relies on an Octree to recursively partition the object into smaller parts for which a small number of motion parameters can accurately represent that portion of the object. The partitioning continues as long as the respective motion parameters are insufficiently accurate to describe the object. Unlike other Octree methods, our method employs an affine transformation for the motion description part, which greatly reduces the storage. Finally, an adaptive thresholding, a singular value decomposition for dealing with singularities, and a quantization and arithmetic coding further enhance our proposed method by increasing the compression while maintaining very good signal-noise ratio. Compared with other methods like trilinear interpolation or Principle Component Analysis (PCA) based algorithm, the Affine-Octree method is easy to compute and highly compact. As the results demonstrate, our method has a better performance in terms of compression ratio and PSNR, while it remains simple

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    Point cloud quality evaluation: Towards a definition for test conditions

    Get PDF
    Recently stakeholders in the area of multimedia representation and transmission have been looking at plenoptic technologies to improve immersive experience. Among these technologies, point clouds denote a volumetric information representation format with important applications in the entertainment, automotive and geographical mapping industries. There is some consensus that state-of-the-art solutions for efficient storage and communication of point clouds are far from satisfactory. This paper describes a study on point cloud quality evaluation, conducted in the context of JPEG Pleno to help define the test conditions of future compression proposals. A heterogeneous set of static point clouds in terms of number of points, geometric structure and represented scenarios were selected and compressed using octree-pruning and a projection-based method, with three different levels of degradation. The models were comprised of both geometrical and color information and were displayed using point sizes large enough to ensure observation of watertight surfaces. The stimuli under assessment were presented to the observers on 2D displays as animations, after defining suitable camera paths to enable visualization of the models in their entirety and realistic consumption. The experiments were carried out in three different laboratories and the subjective scores were used in a series of correlation studies to benchmark objective quality metrics and assess inter-laboratory consistency

    Network streaming and compression for mixed reality tele-immersion

    Get PDF
    Bulterman, D.C.A. [Promotor]Cesar, P.S. [Copromotor

    Design, Implementation, and Evaluation of a Point Cloud Codec for Tele-Immersive Video

    Full text link
    corecore