128 research outputs found

    ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ์˜ ๋Œ€๊ธฐ๋ณด์ • ๋ฐ ๋Œ€๋ฆฌ๊ต์ • ์—ฐ๊ตฌ

    Get PDF
    ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์€ ์„ธ๊ณ„์ตœ์ดˆ์˜ ์ •์ง€๊ถค๋„ ํ•ด์ƒ‰ ์œ„์„ฑ์ธ ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘ ์œ„์„ฑ (GOCI : Geostationary Ocean Color Imager)์— ํ‘œ์ค€์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ๋Œ€๊ธฐ๋ณด์ • ์ด๋ก ์— ๋Œ€ํ•˜์—ฌ ๊ธฐ์ˆ ํ•˜๊ณ  ์žˆ๋‹ค. ํƒ€ ๊ทน๊ถค๋„ ํ•ด์ƒ‰์œ„์„ฑ๋“ค์ด 1~2์ผ ์ฃผ๊ธฐ๋กœ ํ•œ ์žฅ์†Œ๋ฅผ ๋ฐฉ๋ฌธํ•˜๋ฉฐ ์ „ ์ง€๊ตฌ๋ฅผ ๊ด€์ธกํ•˜๋Š” ๊ฒƒ๊ณผ ๋‹ฌ๋ฆฌ ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ์€ ํ•œ๋ฐ˜๋„๋ฅผ ํฌํ•จํ•œ ๋™๋ถ์•„ํ•ด์—ญ์„ 0.5 km ๊ณต๊ฐ„ํ•ด์ƒ๋„๋กœ ๋‚ฎ ์‹œ๊ฐ„ ๋™์•ˆ 1์‹œ๊ฐ„์˜ ์‹œ๊ฐ„๊ฐ„๊ฒฉ์œผ๋กœ ๊ด€์ธกํ•˜๊ณ  ์žˆ์œผ๋ฉฐ (ํ•˜๋ฃจ 8ํšŒ ๊ด€์ธก) ๊ฐ€์‹œ๊ด‘~๊ทผ์ ์™ธํŒŒ์žฅ๋Œ€ (412, 443, 490, 555, 660, 680, 745, 865 nm) ์˜์—ญ์—์„œ ๊ด€์ธกํ•œ๋‹ค. ๋Œ€๊ธฐ์ƒ์ธต ์œ„์„ฑ๊ถค๋„์—์„œ ์ผ๋ฐ˜์ ์ธ ๋ง‘์€ ํ•ด์—ญ์„ ๋Œ€์ƒ์œผ๋กœ ๊ด€์ธก๋œ ๊ฐ€์‹œ๊ด‘~๊ทผ์ ์™ธํŒŒ์žฅ๋Œ€ ์‹ ํ˜ธ ์ค‘ 90%์ด์ƒ์€ ๋Œ€๊ธฐ์‹ ํ˜ธ์ด๋ฉฐ, ํ•ด์ˆ˜์‹ ํ˜ธ์˜ ํฌ๊ธฐ๋Š” 10% ๋ฏธ๋งŒ์„ ์ฐจ์ง€ํ•œ๋‹ค. ๋Œ€๊ธฐ์‹ ํ˜ธ์˜ ํฌ๊ธฐ๊ฐ€ ํ•ด์ˆ˜์‹ ํ˜ธ์˜ ํฌ๊ธฐ๋ณด๋‹ค 10๋ฐฐ ์ด์ƒ ํฌ๊ธฐ ๋•Œ๋ฌธ์— 1%์˜ ๋Œ€๊ธฐ์‹ ํ˜ธ ์ถ”์ • ์˜ค์ฐจ๋Š” 10%์ด์ƒ์˜ ํ•ด์ˆ˜ ๊ด‘ ์ŠคํŽ™ํŠธ๋Ÿผ ์ถ”์ •์˜ค๋ฅ˜๋ฅผ ์ผ์œผํ‚จ๋‹ค. ์ด๋Ÿฐ ์ด์œ ๋กœ ์œ„์„ฑ์„ ํ†ตํ•œ ํ•ด์ƒ‰์›๊ฒฉํƒ์‚ฌ ์ž„๋ฌด๋Š” ๋†’์€ ๋Œ€๊ธฐ๋ณด์ • ์ •๋ฐ€๋„๋ฅผ ์š”๊ตฌํ•˜๊ณ  ์žˆ์œผ๋ฉฐ ๋Œ€๊ธฐ๋ณด์ •์˜ ๊ฐœ๋ฐœ์ด ํ•ด์ƒ‰์›๊ฒฉํƒ์‚ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐœ๋ฐœ ์ค‘ ๊ฐ€์žฅ ํ•ต์‹ฌ์ด ๋œ๋‹ค. ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ ํ‘œ์ค€ ๋Œ€๊ธฐ๋ณด์ •์€ NASA๊ฐ€ ํ•ด์ƒ‰์›๊ฒฉํƒ์‚ฌ ์ž„๋ฌด๋ฅผ ์œ„ํ•ด ๊ฐœ๋ฐœํ•œ SeaWiFS ํ‘œ์ค€ ๋Œ€๊ธฐ๋ณด์ •์— ์ด๋ก ์ ์ธ ๊ธฐ๋ฐ˜์„ ๋‘๊ณ  ์žˆ๋‹ค. SeaWiFS ๋ฐฉ๋ฒ•์€ ์šฐ์„  ๋‘๊ฐœ์˜ ๊ทผ์ ์™ธ ํŒŒ์žฅ๋Œ€ ๊ด€์ธก๊ฒฐ๊ณผ์™€ ๋ณต์‚ฌ์ „๋‹ฌ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ(์กฐ๊ฒฌํ‘œ)๋ฅผ ์„œ๋กœ ๋น„๊ตํ•˜์—ฌ ๋Œ€๊ธฐ ์ค‘ ์—์–ด๋กœ์กธ ์ž…์ž์˜ ์ข…๋ฅ˜ ๋ฐ ๋†๋„ ์ตœ์ ๊ฐ’์„ ์ถ”์ •ํ•ด ๋‚ด๋ฉฐ ์ด ์ถ”์ •๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ชจ๋“  ๊ฐ€์‹œ๊ด‘ ํŒŒ์žฅ์˜ ์—์–ด๋กœ์กธ ๋ฐ˜์‚ฌ๋„ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ๋‹ค์‹œ ์กฐ๊ฒฌํ‘œ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ณ„์‚ฐํ•œ๋‹ค. ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ์˜ ๋Œ€๊ธฐ๋ณด์ •๋„ ์œ ์‚ฌํ•˜๊ฒŒ ๋‘ ๊ทผ์ ์™ธํŒŒ์žฅ๋Œ€ ์—์–ด๋กœ์กธ ๋ฐ˜์‚ฌ๋„ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ์ด์šฉํ•˜์—ฌ ์—์–ด๋กœ์กธ ์ข…๋ฅ˜ ๋ฐ ๋†๋„๋ฅผ ๊ณ„์‚ฐํ•˜๋Š”๋ฐ, ์ด ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•˜์—ฌ SeaWiFS ๋ฐ ๋‹ค๋ฅธ ์œ ์‚ฌ ๋Œ€๊ธฐ๋ณด์ • ๋ฐฉ๋ฒ•๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ์ •ํ™•๋„ ๋ฟ ์•„๋‹ˆ๋ผ ๊ณ„์‚ฐ ํšจ์œจ ๋˜ํ•œ ๊ฐœ์„ ํ•˜์˜€๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ SeaWiFS์— ์ ์šฉ๋œ ์ˆ˜์ฆ๊ธฐ ํก๊ด‘ ๋ณด์ • ๋ชจ๋ธ์„ ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ์˜ ๋ถ„๊ด‘ํŠน์„ฑ์— ๋งž๊ฒŒ ์ˆ˜์ •ํ•˜์—ฌ ์ ์šฉํ•˜์˜€์œผ๋ฉฐ, ํƒ๋„๊ฐ€ ๋†’์€ ํ•ด์—ญ์—์„œ ๋Œ€๊ธฐ๋ณด์ • ์˜ค์ฐจ๋ฅผ ์ค„์ด๋Š” ๋ฐฉ๋ฒ•๋„ ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ ๊ด€์ธก์˜์—ญ์˜ ํ•ด์ˆ˜ ๊ด‘ ํŠน์„ฑ ๋ฐ ๋ฐ˜์‚ฌ๋„ ์ •๋ณด๋“ค์„ ์ด์šฉํ•˜์—ฌ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ดˆ๊ธฐ๋ฒ„์ „์˜ ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ ํ‘œ์ค€ ๋Œ€๊ธฐ๋ณด์ •์˜ ๊ฒ€๋ณด์ • ๊ฒฐ๊ณผ ํƒ๋„๊ฐ€ ๋†’์€ ์—ฐ์•ˆํ•ด์—ญ์—์„œ๋Š” 10% ๋‚ด์™ธ์˜ ๋งŒ์กฑํ•  ๋งŒํ•œ ์˜ค์ฐจ์ˆ˜์ค€์„ ๋ณด์—ฌ์ฃผ์—ˆ์œผ๋‚˜, ํƒ๋„๊ฐ€ ๋‚ฎ์€ ํ•ด์—ญ์—์„œ๋Š” 50% ์ด์ƒ์˜ ์˜ค์ฐจ๋ฅผ ๋ฐœ์ƒ๋˜์—ˆ๋‹ค. ์ด๋Š” ๋Œ€๋ฆฌ๊ต์ • ์ˆ˜ํ–‰์˜ ๋ถ€์žฌ๊ฐ€ ์ฃผ๋œ ์š”์ธ์ด๋ฉฐ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด SeaWiFS ํ‘œ์ค€ ๋Œ€๋ฆฌ๊ต์ • ํ”„๋กœ์„ธ์Šค์— ๊ธฐ๋ฐ˜์„ ๋‘๊ณ  ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ์— ๋งž๊ฒŒ ๋Œ€๋ฆฌ๊ต์ •์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ด ๋Œ€๋ฆฌ๊ต์ • ๋ฐฉ๋ฒ•์—์„œ๋Š” ํŠน์ • ํ•ด์—ญ์˜ ์—์–ด๋กœ์กธ ๊ด‘ํŠน์„ฑ์ด ํ•ญ์ƒ ํ•ด์–‘์„ฑ ์—์–ด๋กœ์กธ์ด๋ผ ๊ฐ€์ •ํ•˜๊ณ  ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ทผ์ ์™ธ ํŒŒ์žฅ๋Œ€ ์œ„์„ฑ ๊ด€์ธก ์กฐ๋„๋ฅผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ•˜์—ฌ ๋‘ ๊ทผ์ ์™ธ ํŒŒ์žฅ๋Œ€๋ฅผ ๋จผ์ € ์ƒ๋Œ€๊ต์ • ํ•œ๋‹ค. ์ดํ›„, ์ƒ๋Œ€๊ต์ •๋œ ๋‘ ๊ทผ์ ์™ธ ํŒŒ์žฅ๋Œ€๋ฅผ ์ด์šฉํ•˜๋ฉด ๋ง‘์€ ํ•ด์—ญ์—์„œ ๋ณต์‚ฌ์ „๋‹ฌ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ ๊ฐ€์‹œ๊ด‘ ํŒŒ์žฅ๋Œ€ ๋Œ€๊ธฐ์กฐ๋„๋ฅผ ๋ชจ์˜ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜๊ณ , ์—ฌ๊ธฐ์— ๋ง‘์€ ํ•ด์—ญ์˜ ํ˜„์žฅ ๊ด‘ ์ธก์ • ์ž๋ฃŒ๊ฐ€ ์ถ”๊ฐ€๋˜๋ฉด ๊ฐ€์‹œ๊ด‘ํŒŒ์žฅ๋Œ€ ์œ„์„ฑ๊ด€์ธก์กฐ๋„์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด ๊ฐ€์‹œ๊ด‘ํŒŒ์žฅ๋Œ€ ๋ชจ์˜ ๊ฒฐ๊ณผ์™€ ์‹ค์ œ ์œ„์„ฑ๊ด€์ธก์กฐ๋„์™€ ๋น„๊ตํ•˜๋ฉด ๊ฐ€์‹œ๊ด‘ํŒŒ์žฅ๋Œ€ ๋Œ€๋ฆฌ๊ต์ •์„ ์™„๋ฃŒํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋Œ€๋ฆฌ๊ต์ • ๊ฒฐ๊ณผ ๋Œ€๋ฆฌ๊ต์ • ์ƒ์ˆ˜๊ฐ€ ์ตœ๋Œ€ 3.2% ๋ฐ”๋€Œ์—ˆ์œผ๋ฉฐ (490 nm ๋ฐด๋“œ) ์ƒˆ ๋Œ€๋ฆฌ๊ต์ • ์ƒ์ˆ˜ ์ ์šฉ ์‹œ ๋ง‘์€ ํ•ด์—ญ ๋Œ€๊ธฐ๋ณด์ • ์ •ํ™•๋„๊ฐ€ ์ตœ๋Œ€ 50% ์ด์ƒ ์ƒ์Šนํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ฒœ๋ฆฌ์•ˆํ•ด์–‘์œ„์„ฑ ๋Œ€๊ธฐ๋ณด์ •์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋Œ€๊ธฐ๋ณด์ • ๊ฒฐ๊ณผ ์›๊ฒฉ๋ฐ˜์‚ฌ๋„ (remote-sensing reflectance: Rrs)๋ฅผ ํ•œ๊ตญํ•ด์–‘๊ณผํ•™๊ธฐ์ˆ ์› ํ•ด์–‘์œ„์„ฑ์—ฐ๊ตฌ์„ผํ„ฐ์—์„œ 2010๋…„ ์ดํ›„๋กœ ํ•œ๋ฐ˜๋„ ์ฃผ๋ณ€ ํ•ด์—ญ ํ˜„์žฅ์กฐ์‚ฌ๋ฅผ ํ†ตํ•ด ์ˆ˜์ง‘ํ•œ ์›๊ฒฉ๋ฐ˜์‚ฌ๋„ ์ž๋ฃŒ๋“ค๊ณผ ๋น„๊ต๊ฒ€์ • ํ•˜์˜€์œผ๋ฉฐ, ๊ฒ€์ •๊ฒฐ๊ณผ 76, 84, 88, 90, 81, 82%์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์ถ”๊ฐ€๋กœ ํ˜„์žฅ์ž๋ฃŒ๊ฐ€ ์•„๋‹Œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ž๋ฃŒ๋ฅผ ํ†ตํ•ด ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋ฟ ์•„๋‹ˆ๋ผ ๋‹ค๋ฅธ ํ•ด์ƒ‰์›๊ฒฉํƒ์‚ฌ ์ž„๋ฌด๋ฅผ ์œ„ํ•ด ๊ฐœ๋ฐœ๋œ ์ฃผ์š” ๋Œ€๊ธฐ๋ณด์ • ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค ๊ตฌํ˜„ํ•˜์—ฌ ํ•จ๊ป˜ ๋น„๊ต๊ฒ€์ฆ ํ•˜์˜€๊ณ , ๋ณธ ๋น„๊ต๊ฒ€์ฆ์—์„œ๋„ ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ ํ‘œ์ค€ ๋Œ€๊ธฐ๋ณด์ •์ด ๋‹ค๋ฅธ ๋Œ€๊ธฐ๋ณด์ • ๋ฐฉ๋ฒ•๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ๊ฐ€์žฅ ๋‚ฎ์€ ์˜ค์ฐจ์œจ์„ ๋ณด์—ฌ์ฃผ์—ˆ์œผ๋ฉฐ, ํŠนํžˆ ๋‹ค์ค‘์‚ฐ๋ž€ ํšจ๊ณผ๊ฐ€ ํฐ ์ž‘์€ ์ž…์žํฌ๊ธฐ์˜ ์—์–ด๋กœ์กธ ๋ชจ๋ธ์—์„œ ๋” ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋Š” ์ด๋ก ์ ์œผ๋กœ SeaWiFS ๋“ฑ ๋น„์Šทํ•œ ๋ฐด๋“œ ํŠน์„ฑ์„ ๊ฐ€์ง„ ํƒ€ ํ•ด์ƒ‰์œ„์„ฑ์˜ ๋Œ€๊ธฐ๋ณด์ •๋ฐฉ๋ฒ•์œผ๋กœ๋„ ์ ์šฉ์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ ์ž๋ฃŒ์ฒ˜๋ฆฌ์‹œ์Šคํ…œ (GOCI data processing system: GDPS) 1.5๋ฒ„์ „์—์˜ ์ ์šฉ๋  ์˜ˆ์ •์ด๋‹ค.Chapter 1. Introduction 1 1.1 Ocean color remote sensing 1 1.2 Geostationary Ocean Color Imager (GOCI) 2 1.3 Atmospheric correction and vicarious calibration 5 Chapter 2. Initial atmospheric correction for the GOCI data 10 2.1 Introduction 10 2.2 Method 11 2.2.1 Correction for gaseous absorption and whitecap radiance 13 2.2.2 Solar irradiance normalization 15 2.2.3 Correction for molecular (Rayleigh) scattering 17 2.2.4 Cloud mask 18 2.2.5 Correction for multiple scattering by aerosols 19 2.2.6 Correction for atmospheric transmittance 22 2.2.7 Correction for near-infrared water reflectance over turbid waters 22 2.3 Conclusion 24 Chapter 3. Algorithm updates and vicarious calibration for the GOCI atmospheric correction 25 3.1 Backgrounds 25 3.2 Updates to the initial GOCI atmospheric correction algorithm 26 3.2.1 Correction for gaseous absorption and whitecap radiance 26 3.2.2 Sun-glint correction 28 3.2.3 Considering gravity effect for Rayleigh scattering 29 3.2.4 Correction for multiple scattering by aerosols - SRAMS 30 3.2.5 Correction for bidirectional effects for water reflectance 35 3.2.6 Correction for near-infrared water reflectance over turbid waters 39 3.2.7 Atmospheric transmittance with considering anisotropic angular distribution of water reflectance 40 3.3 Vicarious calibration of GOCI near-infrared bands 41 3.3.1 Method 44 3.3.2 Inter-calibration of GOCI near-infrared bands 45 3.3.3 Vicarious calibration of GOCI visible bands 49 Chapter 4. Validation results 51 4.1 Data 51 4.1.1 Synthetic data derived by simulations 51 4.1.2 In situ radiometric data measured from shipboard 52 4.1.3 AERONET-OC radiometric data 56 4.2 Validation of SRAMS scheme with simulation data 58 4.3 Assessment of the atmospheric correction improvements with in situ radiometric data 59 Chapter 5. Discussions 61 5.1 Impacts of water vapor correction on ocean color products 61 5.2 Stability for high solar and satellite zenith angle for diurnal observation 62 5.3 Cloud masking on fast-moving clouds and quality analysis 63 5.4 Evaluation of the GOCI aerosol correction scheme compared with other approaches 64 5.4.1 Aerosol correction approach for OCTS 64 5.4.2 Aerosol correction approach for MERIS 67 5.4.3 Evaluation results 69 5.5 Pitfalls in estimation of aerosol reflectance using 2-NIR bands 71 5.6 Issues in the vicarious calibration of GOCI VIS and NIR bands 72 5.7 Uncertainties from bidirectional effect 75 Chapter 6. Conclusion 76 Appendix. Glossary of symbols 82 Acknowledgements 86 References 88Docto

    Sensor capability and atmospheric correction in ocean colour remote sensing

    Get PDF
    ยฉ 2015 by the authors; licensee MDPI, Basel, Switzerland. Accurate correction of the corrupting effects of the atmosphere and the water's surface are essential in order to obtain the optical, biological and biogeochemical properties of the water from satellite-based multi-and hyper-spectral sensors. The major challenges now for atmospheric correction are the conditions of turbid coastal and inland waters and areas in which there are strongly-absorbing aerosols. Here, we outline how these issues can be addressed, with a focus on the potential of new sensor technologies and the opportunities for the development of novel algorithms and aerosol models. We review hardware developments, which will provide qualitative and quantitative increases in spectral, spatial, radiometric and temporal data of the Earth, as well as measurements from other sources, such as the Aerosol Robotic Network for Ocean Color (AERONET-OC) stations, bio-optical sensors on Argo (Bio-Argo) floats and polarimeters. We provide an overview of the state of the art in atmospheric correction algorithms, highlight recent advances and discuss the possible potential for hyperspectral data to address the current challenges

    Exploring Himawari-8 geostationary observations for the advanced coastal monitoring of the Great Barrier Reef

    Get PDF
    Larissa developed an algorithm to enable water-quality assessment within the Great Barrier Reef (GBR) using weather satellite observations collected every 10 minutes. This unprecedented temporal resolution records the dynamic nature of water quality fluctuations for the entire GBR, with applications for improved monitoring and management

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas

    Estimation of ground-level particulate matter concentrations through the synergistic use of satellite observations and process-based models over South Korea

    Get PDF
    Long-term exposure to particulate matter (PM) with aerodynamic diameters < 10 (PM10) and 2.5 mu m (PM2.5) has negative effects on human health. Although station-based PM monitoring has been conducted around the world, it is still challenging to provide spatially continuous PM information for vast areas at high spatial resolution. Satellite-derived aerosol information such as aerosol optical depth (AOD) has been frequently used to investigate ground-level PM concentrations. In this study, we combined multiple satellite-derived products including AOD with model-based meteorological parameters (i. e., dew-point temperature, wind speed, surface pressure, planetary boundary layer height, and relative humidity) and emission parameters (i. e., NO, NH3, SO2, primary organic aerosol (POA), and HCHO) to estimate surface PM concentrations over South Korea. Random forest (RF) machine learning was used to estimate both PM10 and PM2.5 concentrations with a total of 32 parameters for 2015-2016. The results show that the RF-based models produced good performance resulting in R-2 values of 0.78 and 0.73 and root mean square errors (RMSEs) of 17.08 and 8.25 mu gm(-3) for PM10 and PM2.5, respectively. In particular, the proposed models successfully estimated high PM concentrations. AOD was identified as the most significant for esti-mating ground-level PM concentrations, followed by wind speed, solar radiation, and dew-point temperature. The use of aerosol information derived from a geostationary satellite sensor (i. e., Geostationary Ocean Color Imager, GOCI) resulted in slightly higher accuracy for estimating PM concentrations than that from a polar-orbiting sensor system (i. e., the Moderate Resolution Imaging Spectroradiometer, MODIS). The proposed RF models yielded better performance than the process-based approaches, particularly in improving on the underestimation of the process-based models (i. e., GEOS-Chem and the Community Multiscale Air Quality Modeling System, CMAQ)

    ์ •์ง€๊ถค๋„ํ•ด์ƒ‰์œ„์„ฑ(GOCI)๋ฅผ ์œ„ํ•œ ๋Œ€๊ธฐ๋ณด์ • ๊ธฐ์ˆ ์˜ ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€, 2012. 8. ์˜ค์ž„์ƒ.๋ณธ ๋…ผ๋ฌธ์€ ์„ธ๊ณ„์ตœ์ดˆ์˜ ์ •์ง€๊ถค๋„ ํ•ด์ƒ‰ ์œ„์„ฑ์ธ ์ฒœ๋ฆฌ์•ˆ ํ•ด์ƒ‰ ์œ„์„ฑ (GOCI : Geostationary Ocean Color Imager)์˜ ๋ฐ์ดํ„ฐ์ฒ˜๋ฆฌ ์†Œํ”„ํŠธ์›จ์–ด (GDPS : GOCI Data Processing System) 1.1๋ฒ„์ „์— ์ ์šฉ๋  GOCI์˜ ํ‘œ์ค€ ๋Œ€๊ธฐ๋ณด์ • ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•ด ๊ธฐ์ˆ ํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ๋Œ€๊ธฐ๋ณด์ • ์ด๋ก ์€ ๋Œ€๊ธฐ์ž…์ž๊ฐ„์˜ ๋ณต์ˆ˜์‚ฐ๋ž€์„ ๊ณ ๋ คํ•œ SeaWiFS ํ‘œ์ค€๋Œ€๊ธฐ๋ณด์ • ๋ฐฉ๋ฒ•์— ์ด๋ก ์ ์ธ ๊ธฐ๋ฐ˜์„ ๋‘๊ณ  ์žˆ์œผ๋ฉฐ, case-2ํƒ์ˆ˜ ๋ณด์ •, ์—์–ด๋กœ์กธ ๋ชจ๋ธ ๋ณ€๊ฒฝ, ์Šฌ๋กฏํŽธ์ฐจ ๊ฐœ์„  ๋“ฑ ๋ถ€๋ถ„์ ์ธ ๋ณด์™„์ด ์ถ”๊ฐ€์ ์œผ๋กœ ์ด๋ฃจ์–ด์กŒ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ํŠนํžˆ ํƒ์ˆ˜ ํ•ด์—ญ์—์„œ์˜ ๋Œ€๊ธฐ๋ณด์ • ๊ฐœ์„ ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋Š”๋ฐ, ๊ทผ์ ์™ธ ํŒŒ์žฅ๋Œ€(NIR)์—์„œ ํƒ์ˆ˜ํ•ด์ˆ˜๋ฐ˜์‚ฌ๋„ ์ถ”์ •์„ ์œ„ํ•ด ์ ์ƒ‰ํŒŒ์žฅ๋ถ€ํ„ฐ ๊ทผ์ ์™ธ ํŒŒ์žฅ์˜์—ญ๊นŒ์ง€์˜ ํ•ด์ˆ˜ ๋ฐ˜์‚ฌ๋„ ๊ฒฝํ—˜์  ์ƒ๊ด€๊ด€๊ณ„ ๋ชจ๋ธ์„ 4์ฐจ ๋‹คํ•ญ์‹์œผ๋กœ ๊ตฌ์ถ•ํ•˜์—ฌ ๋ฐ˜๋ณต์ ์ธ ๊ณ„์‚ฐ์„ ํ†ตํ•ด ์˜ค์ฐจ๋ฅผ ์ค„์ด๋Š” ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•˜์˜€๋‹ค. ์ƒ๊ด€๊ด€๊ณ„ ๋ชจ๋ธ๋ง์„ ์œ„ํ•œ ํ•ด์ˆ˜ ๋ฐ˜์‚ฌ๋„ ๋ฐ์ดํ„ฐ๋Š” ํƒ์ˆ˜์— ํ•ด๋‹นํ•˜๋Š” ํ”ฝ์…€์—์„œ ๊ฐ€์žฅ ์ธ์ ‘ํ•œ ๋ง‘์€ ํ•ด์—ญ์˜ ๋Œ€๊ธฐ๋ณด์ • ๊ฒฐ๊ณผ์—์„œ ์–ป์–ด์ง„ ์—์–ด๋กœ์กธ ์ข…๋ฅ˜ ๋ฐ ๊ด‘ํ•™๋‘๊ป˜ ์ •๋ณด๋ฅผ ์ˆ˜ํ‰์ ์œผ๋กœ ํ™•์žฅํ•˜์—ฌ ๋‹ค์‹œ ๋Œ€๊ธฐ๋ณด์ •ํ•˜๊ณ  ์—ฌ๊ธฐ์—์„œ ์–ป์–ด์ง„ ํ•ด์ˆ˜ ๋ฐ˜์‚ฌ๋„ ๋ฐ์ดํ„ฐ๋“ค์„ ์ˆ˜์ง‘ํ•˜์˜€๋‹ค. ์ด๋ ‡๊ฒŒ ์œ„์„ฑ์„ ํ†ตํ•ด ์ˆ˜์ง‘๋œ NIR ํŒŒ์žฅ๋Œ€ ํ•ด์ˆ˜ ๋ฐ˜์‚ฌ๋„ ์ž๋ฃŒ์˜ ์ƒ๊ด€๊ด€๊ณ„๋Š” ํ˜„์žฅ์ˆ˜์ง‘์„ ํ†ตํ•ด ์–ป์–ด์ง„ ์ž๋ฃŒ๋ณด๋‹ค ๋” ์ข‹์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋Œ€๊ธฐ๋ณด์ •์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” 2011๋…„ ํ•œ ํ•ด ํ•œ๋ฐ˜๋„ ์ฃผ๋ณ€ ํ•ด์—ญ ํ˜„์žฅ์กฐ์‚ฌ๋ฅผ ํ†ตํ•ด ์ˆ˜์ง‘ํ•œ ์ •๊ทœ์ˆ˜์ถœ๊ด‘๋Ÿ‰ (nLw) ์ŠคํŽ™ํŠธ๋Ÿผ ์ž๋ฃŒ์™€ ๋น„๊ต๊ฒ€์ • ํ•˜์˜€๋‹ค. ๋Œ€๊ธฐ๋ณด์ •์˜ ๊ฒ€์ •๊ฒฐ๊ณผ, ํƒ๋„๊ฐ€ ๋†’์€ ํ•ด์—ญ์—์„œ ํŠนํžˆ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์ง€๋งŒ, ๋ง‘์€ ํ•ด์—ญ์—์„œ๋Š” ํ•ด์ˆ˜๋ฉด ์œ„ ๊ด‘์ธก์ • ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋ฐœ์ƒํ•˜๋Š” ์˜ค์ฐจ๋ฅผ ๊ฐ์•ˆํ•˜๋”๋ผ๋„ ์•„์ง ์–ด๋Š ์ •๋„ ๊ฐœ์„ ์ด ํ•„์š”ํ•ด ๋ณด์ธ๋‹ค. ์ด๋Ÿฐ ๋ง‘์€ ํ•ด์—ญ์—์„œ์˜ ์˜ค์ฐจ๋Š” ๋Œ€๊ธฐ๋ณด์ •์˜ ์˜ค์ฐจ ๋ฟ ์•„๋‹ˆ๋ผ, ์„ผ์„œ์˜ ์ง€์ƒํ…Œ์ŠคํŠธ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ถˆํ™•์‹ค์„ฑ์— ์˜ํ•ด์„œ๋„ ๋ฐœ์ƒํ•œ๋‹ค. ์ถ”ํ›„ ์žฅ๊ธฐ๊ฐ„ ์ˆ˜์ง‘ํ•œ ํ˜„์žฅ๋ฐ์ดํ„ฐ ๋ฐ ์œ„์„ฑ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•œ ๋Œ€๋ฆฌ๋ณด์ • (vicarious calibration) ๋“ฑ์˜ ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•œ๋‹ค๋ฉด ์ด ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์˜ค์ฐจ๋Š” ์–ด๋Š ์ •๋„ ๋ณด์™„ ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค.This thesis describes an atmospheric correction algorithm of Geostationary Ocean Color Imager (GOCI) which is to be implemented in GOCI Data Processing System (GDPS) โ€“developed by the Korea Ocean Satellite Center of the Korea Ocean Research and Development Institute. The algorithm is based on the standard atmospheric algorithm of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data which accounts for multiple scattering effectsand is partially updated in terms of turbid case-2 water correction, aerosol models and slot correction. For turbid water correction, we used a regional empirical relationship between normalized water reflectance at the red and near infrared bands. The relationship was derived from normalized water-leaving reflectances in turbid pixels in satellite images after atmospheric correction that processed using aerosol properties (such as aerosol optical thickness and aerosol type) derived from nearest neighboring non-turbid waters. This satellite derived data based empirical model showed a less scattered relationship than the in situ measurements. In order to validate the GOCI atmospheric correction, we compared our results with in situ measurements of normalized water leaving radiance (nLw) spectra, which had been obtained during several cruises in 2011 around in the Korean seas. The validation results are encouraging especially for turbid waters. The validation in clear waters implies that the atmospheric correction should be improved in the future. Vicarious calibration would improve the results for the clear waters, although a part of the deviation arose from uncertainties in the above water nLw measurements.Abstract Table of Contents List of Figures List of Tables 1. Introduction 1.1 Atmospheric correction 1.2 Previous studies 2. SeaWiFS atmospheric correction algorithm and its extension for GOCI 2.1 A Classical atmospheric correction algorithm for SeaWiFS 2.2 Extension of the SeaWiFS Standard Atmospheric Correction Algorithm to the GOCI 3. Results 4. Discussion and conclusions References Abstract (in Korean) Acknowledgements (in Korean)Maste

    Monitoring multi-temporal and spatial variations of water transparency in the Jiaozhou Bay using GOCI data

    Get PDF
    Water transparency, commonly measured as Secchi disk depth (SDD), is essential for describing the optical properties of coastal waters. We proposed a regional linear corrected SDD estimation model based on the North Sea Mathematical Models for GOCI and the mechanical model developed by Lee et al. (2015) in the Jiaozhou Bay. Combined with the multiple variable linear regression analysis, the diurnal SDD variations of the bay inside and the bay mouth are controlled by the solar zenith angle (SZA) and tides. The bay outside mainly varies with SZA. From GOCI observations between 2011 and 2021, wind force influenced the entire area on the inner-annual SDD variations. It exhibits an increasing trend in the inter-annual dynamics, which was more stable inside the bay with an annual increase of 0.035 m, and air temperature was the most significant contribution. However, human activities cannot be ignored in causing water environment changes

    Challenges and New Advances in Ocean Color Remote Sensing of Coastal Waters

    Get PDF
    Knowing that coastal areas concentrate about 60% of the world's population (within 100 km from the coast), that 75-90% of the global sink of suspended river load takes place in coastal waters in which about 15% of the primary production occurs, the ecological, societal and economical value of these areas are obvious (fish resources, aquaculture, water quality information, recreation areas management, global carbon budget, etc). In that context, precise assessment of suspended particulate matter (SPM) concentrations and of the phenomena controlling its temporal variability is a key objective for many research fields in coastal areas. SPM which encompasses organic (living and non-living) and inorganic matter controls the penetration of light into the water and brings new nutrients into the system, both key parameters influencing phytoplankton primary production. Concentrations and availability of SPM are also known to control rates of food intake, growth and reproduction for various filter feeder organisms. Phytoplankton is highly sensitive to environmental perturbations (such as nutrient inputs, light, and turbulence). The abundance, biomass and dynamics of phytoplankton in coastal areas therefore reflect the prevailing environmental conditions and represent key parameters for assessing information on the ecological conditions, as well as on the coastal water quality. Because phytoplankton is highly sensitive to environmental perturbations [1], its distribution patterns and temporal variability represent good indicators of the ecological conditions of a defined region [2, 3]. Coastal waters also host complex ecosystems and represent important fishery areas that support industry and provide livelihood to coastal settlements. The food chain in the coastal ocean is generally short (especially in upwelling systems, having as low as three trophic levels) whereas the open ocean food web presents up to six trophic levels [4]. As a result, when compared to the open ocean, a relative lower fraction of the primary production gets respired in the coastal ocean while a higher fraction reaches the uppermost trophic level (fish) [5] or is exported to adjacent areas (coastal or open sea)..
    • โ€ฆ
    corecore