8,761 research outputs found

    Genome-wide analysis of 30 -untranslated regions supports the existence of post-transcriptional regulons controlling gene expression in trypanosomes

    Get PDF
    In eukaryotic cells, a group of messenger ribonucleic acids (mRNAs) encoding functionally interrelated proteins together with the trans-acting factors that coordinately modulate their expression is termed a post-transcriptional regulon, due to their partial analogy to a prokaryotic polycistron. This mRNA clustering is organized by sequence-specific RNA-binding proteins (RBPs) that bind cis-regulatory elements in the noncoding regions of genes, and mediates the synchronized control of their fate. These recognition motifs are often characterized by conserved sequences and/or RNA structures, and it is likely that various classes of cis-elements remain undiscovered. Current evidence suggests that RNA regulons govern gene expression in trypanosomes, unicellular parasites which mainly use post-transcriptional mechanisms to control protein synthesis. In this study, we used motif discovery tools to test whether groups of functionally related trypanosomatid genes contain a common cis-regulatory element. We obtained conserved structured RNA motifs statistically enriched in the noncoding region of 38 out of 53 groups of metabolically related transcripts in comparison with a random control. These motifs have a hairpin loop structure, a preferred sense orientation and are located in close proximity to the open reading frames. We found that 15 out of these 38 groups represent unique motifs in which most 30 -UTR signature elements were group-specific. Two extensively studied Trypanosoma cruzi RBPs, TcUBP1 and TcRBP3 were found associated with a few candidate RNA regulons. Interestingly, 13 motifs showed a strong correlation with clusters of developmentally co-expressed genes and six RNA elements were enriched in gene clusters affected after hyperosmotic stress. Here we report a systematic genome-wide in silico screen to search for novel RNA-binding sites in transcripts, and describe an organized network of several coordinately regulated cohorts of mRNAs in T. cruzi. Moreover, we found that structured RNA elements are also conserved in other human pathogens. These results support a model of regulation of gene expression by multiple post-transcriptional regulons in trypanosomes.Fil: de Gaudenzi, Javier Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Carmona, Santiago Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Agüero, Fernan Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Frasch, Alberto Carlos C.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentin

    A role for non-B DNA forming sequences in mediating microlesions causing human inherited disease

    Get PDF
    Missense/nonsense mutations and micro-deletions/micro-insertions of <21bp together represent ~76% of all mutations causing human inherited disease. Previous studies have shown that their occurrence is influenced by sequences capable of non-B DNA formation (direct, inverted and mirror repeats; G-quartets). We found that a greater than expected proportion (~21%) of both micro-deletions and micro-insertions occur within direct repeats and are explicable by slipped misalignment. A novel mutational mechanism, non-B DNA triplex formation followed by DNA repair, is proposed to explain ~5 % of micro-deletions and micro-insertions at mirror repeats. Further, G-quadruplex-forming sequences, direct and inverted repeats appear to play a prominent role in mediating missense mutations, whereas only direct and inverted repeats mediate nonsense mutations. We suggest a mutational mechanism involving slipped strand mispairing, slipped structure formation and DNA repair, to explain ~15% of missense and ~12% of nonsense mutations leading to the formation of perfect direct repeat s from imperfect repeats, or to the extension of existing direct repeats. Similar proportions of missense and nonsense mutations were explicable by the mechanism of hairpin loop formation and DNA repair leading to the formation of perfect inverted repeats from imperfect repeats. The proposed mechanisms provide new insights into mutagenesis underlying pathogenic micro-lesions

    The EM Algorithm and the Rise of Computational Biology

    Get PDF
    In the past decade computational biology has grown from a cottage industry with a handful of researchers to an attractive interdisciplinary field, catching the attention and imagination of many quantitatively-minded scientists. Of interest to us is the key role played by the EM algorithm during this transformation. We survey the use of the EM algorithm in a few important computational biology problems surrounding the "central dogma"; of molecular biology: from DNA to RNA and then to proteins. Topics of this article include sequence motif discovery, protein sequence alignment, population genetics, evolutionary models and mRNA expression microarray data analysis.Comment: Published in at http://dx.doi.org/10.1214/09-STS312 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Alignment, Clustering and Extraction of Structured Motifs in DNA Promoter Sequences

    Get PDF
    A simple motif is a short DNA sequence found in the promoter region and believed to act as a binding site for a transcription factor protein. A structured motif is a sequence of simple motifs (boxes) separated by short sequences (gaps). Biologists theorize that the presence of these motifs play a key role in gene expression regulation. Discovering these patterns is an important step towards understanding protein-gene and gene-gene interaction thus facilitates the building of accurate gene regulatory network models. DNA sequence motif extraction is an important problem in bioinformatics. Many studies have proposed algorithms to solve the problem instance of simple motif extraction. Only in the past decade has the more complex structured motif extraction problem been examined by researchers. The problem is inherently challenging as structured motif patterns are segmented into several boxes separated by variable size gaps for each instance. These boxes may not be exact copies, but may have multiple mismatched positions. The challenge is extenuated by the lack of resources for real datasets covering a wide range of possible cases. Also, incomplete annotation of real data leads to the discovery of unknown motifs that may be regarded as false positives. Furthermore, current algorithms demand unreasonable amount of prior knowledge to successfully extract the target pattern. The contributions of this research are four new algorithms. First, SMGenerate generates simulated datasets of implanted motifs that covers a wide range of biologically possible cases. Second, SMAlign aligns a pair of structured motifs optimally and efficiently given their gap constraints. Third, SMCluster produces multiple alignment of structured motifs through hierarchical clustering using SMAlign\u27s affinity score. Finally, SMExtract extracts structured motifs from a set of sequences by using SMCluster to construct the target pattern from the top reported two-box patterns (fragments), extracted using an existing algorithm (Exmotif) and a two-box template. The main advantage of SMExtract is its efficiency to extract longer degenerate patterns while requiring less prior knowledge, about the pattern to be extracted, than current algorithms
    corecore