4,025 research outputs found

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Tracking by Prediction: A Deep Generative Model for Mutli-Person localisation and Tracking

    Full text link
    Current multi-person localisation and tracking systems have an over reliance on the use of appearance models for target re-identification and almost no approaches employ a complete deep learning solution for both objectives. We present a novel, complete deep learning framework for multi-person localisation and tracking. In this context we first introduce a light weight sequential Generative Adversarial Network architecture for person localisation, which overcomes issues related to occlusions and noisy detections, typically found in a multi person environment. In the proposed tracking framework we build upon recent advances in pedestrian trajectory prediction approaches and propose a novel data association scheme based on predicted trajectories. This removes the need for computationally expensive person re-identification systems based on appearance features and generates human like trajectories with minimal fragmentation. The proposed method is evaluated on multiple public benchmarks including both static and dynamic cameras and is capable of generating outstanding performance, especially among other recently proposed deep neural network based approaches.Comment: To appear in IEEE Winter Conference on Applications of Computer Vision (WACV), 201

    Deep Learning-based Vehicle Behaviour Prediction For Autonomous Driving Applications: A Review

    Full text link
    Behaviour prediction function of an autonomous vehicle predicts the future states of the nearby vehicles based on the current and past observations of the surrounding environment. This helps enhance their awareness of the imminent hazards. However, conventional behaviour prediction solutions are applicable in simple driving scenarios that require short prediction horizons. Most recently, deep learning-based approaches have become popular due to their superior performance in more complex environments compared to the conventional approaches. Motivated by this increased popularity, we provide a comprehensive review of the state-of-the-art of deep learning-based approaches for vehicle behaviour prediction in this paper. We firstly give an overview of the generic problem of vehicle behaviour prediction and discuss its challenges, followed by classification and review of the most recent deep learning-based solutions based on three criteria: input representation, output type, and prediction method. The paper also discusses the performance of several well-known solutions, identifies the research gaps in the literature and outlines potential new research directions

    A Joint 3D-2D based Method for Free Space Detection on Roads

    Full text link
    In this paper, we address the problem of road segmentation and free space detection in the context of autonomous driving. Traditional methods either use 3-dimensional (3D) cues such as point clouds obtained from LIDAR, RADAR or stereo cameras or 2-dimensional (2D) cues such as lane markings, road boundaries and object detection. Typical 3D point clouds do not have enough resolution to detect fine differences in heights such as between road and pavement. Image based 2D cues fail when encountering uneven road textures such as due to shadows, potholes, lane markings or road restoration. We propose a novel free road space detection technique combining both 2D and 3D cues. In particular, we use CNN based road segmentation from 2D images and plane/box fitting on sparse depth data obtained from SLAM as priors to formulate an energy minimization using conditional random field (CRF), for road pixels classification. While the CNN learns the road texture and is unaffected by depth boundaries, the 3D information helps in overcoming texture based classification failures. Finally, we use the obtained road segmentation with the 3D depth data from monocular SLAM to detect the free space for the navigation purposes. Our experiments on KITTI odometry dataset, Camvid dataset, as well as videos captured by us, validate the superiority of the proposed approach over the state of the art.Comment: Accepted for publication at IEEE WACV 201

    Multi-Support Gaussian Processes for Continuous Occupancy Mapping

    Get PDF
    Robotic mapping enables an autonomous agent to build a representation of its environment based upon sensorial information. In particular, occupancy mapping aims at classifying regions of space according to whether or not they are occupied---and, therefore, inaccessible to the agent. Traditional techniques rely on discretisation to perform this task. The problems tackled by this thesis stem from the discretisation of continuous phenomena and from the inherently inaccurate and large datasets typically created by state-of-the-art robotic sensors. To approach this challenge, we make use of statistical modelling to handle the noise in the data and create continuous occupancy maps. The proposed approach makes use of Gaussian processes, a non-parametric Bayesian inference framework that uses kernels, to handle sensor noise and learn the dependencies among data points. The main drawback is the method's computational complexity, which grows cubically with the number of input points. The contributions of this work are twofold. First, we generalise kernels to be able to handle inputs in the form of areas, as well as points. This allows groups of spatially correlated data points to be condensed into a single entry, considerably reducing the size of the covariance matrix and enabling the method to deal efficiently with large amounts of data. Then, we create a mapping algorithm that makes use of Gaussian processes equipped with this kernel to build continuous occupancy maps. Experiments were conducted, using both synthetic and publicly available real data, to compare the presented algorithm with a similar previous method. They show it to be comparably accurate, yet considerably faster when dealing with large datasets

    Non-Invasive Ambient Intelligence in Real Life: Dealing with Noisy Patterns to Help Older People

    Get PDF
    This paper aims to contribute to the field of ambient intelligence from the perspective of real environments, where noise levels in datasets are significant, by showing how machine learning techniques can contribute to the knowledge creation, by promoting software sensors. The created knowledge can be actionable to develop features helping to deal with problems related to minimally labelled datasets. A case study is presented and analysed, looking to infer high-level rules, which can help to anticipate abnormal activities, and potential benefits of the integration of these technologies are discussed in this context. The contribution also aims to analyse the usage of the models for the transfer of knowledge when different sensors with different settings contribute to the noise levels. Finally, based on the authors’ experience, a framework proposal for creating valuable and aggregated knowledge is depicted.This research was partially funded by Fundación Tecnalia Research & Innovation, and J.O.-M. also wants to recognise the support obtained from the EU RFCS program through project number 793505 ‘4.0 Lean system integrating workers and processes (WISEST)’ and from the grant PRX18/00036 given by the Spanish Secretaría de Estado de Universidades, Investigación, Desarrollo e Innovación del Ministerio de Ciencia, Innovación y Universidades

    Neural ODEs with stochastic vector field mixtures

    Full text link
    It was recently shown that neural ordinary differential equation models cannot solve fundamental and seemingly straightforward tasks even with high-capacity vector field representations. This paper introduces two other fundamental tasks to the set that baseline methods cannot solve, and proposes mixtures of stochastic vector fields as a model class that is capable of solving these essential problems. Dynamic vector field selection is of critical importance for our model, and our approach is to propagate component uncertainty over the integration interval with a technique based on forward filtering. We also formalise several loss functions that encourage desirable properties on the trajectory paths, and of particular interest are those that directly encourage fewer expected function evaluations. Experimentally, we demonstrate that our model class is capable of capturing the natural dynamics of human behaviour; a notoriously volatile application area. Baseline approaches cannot adequately model this problem
    corecore