88 research outputs found

    Gait recognition and understanding based on hierarchical temporal memory using 3D gait semantic folding

    Get PDF
    Gait recognition and understanding systems have shown a wide-ranging application prospect. However, their use of unstructured data from image and video has affected their performance, e.g., they are easily influenced by multi-views, occlusion, clothes, and object carrying conditions. This paper addresses these problems using a realistic 3-dimensional (3D) human structural data and sequential pattern learning framework with top-down attention modulating mechanism based on Hierarchical Temporal Memory (HTM). First, an accurate 2-dimensional (2D) to 3D human body pose and shape semantic parameters estimation method is proposed, which exploits the advantages of an instance-level body parsing model and a virtual dressing method. Second, by using gait semantic folding, the estimated body parameters are encoded using a sparse 2D matrix to construct the structural gait semantic image. In order to achieve time-based gait recognition, an HTM Network is constructed to obtain the sequence-level gait sparse distribution representations (SL-GSDRs). A top-down attention mechanism is introduced to deal with various conditions including multi-views by refining the SL-GSDRs, according to prior knowledge. The proposed gait learning model not only aids gait recognition tasks to overcome the difficulties in real application scenarios but also provides the structured gait semantic images for visual cognition. Experimental analyses on CMU MoBo, CASIA B, TUM-IITKGP, and KY4D datasets show a significant performance gain in terms of accuracy and robustness

    Lidar-based Gait Analysis and Activity Recognition in a 4D Surveillance System

    Get PDF
    This paper presents new approaches for gait and activity analysis based on data streams of a Rotating Multi Beam (RMB) Lidar sensor. The proposed algorithms are embedded into an integrated 4D vision and visualization system, which is able to analyze and interactively display real scenarios in natural outdoor environments with walking pedestrians. The main focus of the investigations are gait based person re-identification during tracking, and recognition of specific activity patterns such as bending, waving, making phone calls and checking the time looking at wristwatches. The descriptors for training and recognition are observed and extracted from realistic outdoor surveillance scenarios, where multiple pedestrians are walking in the field of interest following possibly intersecting trajectories, thus the observations might often be affected by occlusions or background noise. Since there is no public database available for such scenarios, we created and published a new Lidar-based outdoors gait and activity dataset on our website, that contains point cloud sequences of 28 different persons extracted and aggregated from 35 minutes-long measurements. The presented results confirm that both efficient gait-based identification and activity recognition is achievable in the sparse point clouds of a single RMB Lidar sensor. After extracting the people trajectories, we synthesized a free-viewpoint video, where moving avatar models follow the trajectories of the observed pedestrians in real time, ensuring that the leg movements of the animated avatars are synchronized with the real gait cycles observed in the Lidar stream

    Gait recognition from corrupted silhouettes: a robust statistical approach

    Get PDF
    This paper introduces a method based on robust statistics to build reliable gait signatures from averaging silhouette descriptions, mainly when gait sequences are affected by severe and persistent defects. The term robust refers to the ability of reducing the impact of silhouette defects (outliers) on the average gait pattern, while taking advantage of clean silhouette regions. An extensive experimental framework was defined based on injecting three types of realistic defects (salt and pepper noise, static occlusion, and dynamic occlusion) to clean gait sequences, both separately in an easy setting and jointly in a hard setting. The robust approach was compared against two other operation modes: (1) simple mean (weak baseline) and (2) defect exclusion (strong benchmark). Three gait representation methods based on silhouette averaging were used: Gait Energy Image (GEI), Gradient Histogram Energy Image (GHEI), and the joint use of GEI and HOG descriptors. Quality of gait signatures was assessed by their discriminant power in a large number of gait recognition tasks. Nonparametric statistical tests were applied on recognition results, searching for significant differences between operation modes.This work has been supported by the grants P1-1B2012-22 and PREDOC/2012/05 from Universitat Jaume I, PROMETEOII/2014/062 from Generalitat Valenciana, and TIN2013-46522-P from Spanish Ministry of Economy and Competitiveness

    Gait recognition based on shape and motion analysis of silhouette contours

    Get PDF
    This paper presents a three-phase gait recognition method that analyses the spatio-temporal shape and dynamic motion (STS-DM) characteristics of a human subject’s silhouettes to identify the subject in the presence of most of the challenging factors that affect existing gait recognition systems. In phase 1, phase-weighted magnitude spectra of the Fourier descriptor of the silhouette contours at ten phases of a gait period are used to analyse the spatio-temporal changes of the subject’s shape. A component-based Fourier descriptor based on anatomical studies of human body is used to achieve robustness against shape variations caused by all common types of small carrying conditions with folded hands, at the subject’s back and in upright position. In phase 2, a full-body shape and motion analysis is performed by fitting ellipses to contour segments of ten phases of a gait period and using a histogram matching with Bhattacharyya distance of parameters of the ellipses as dissimilarity scores. In phase 3, dynamic time warping is used to analyse the angular rotation pattern of the subject’s leading knee with a consideration of arm-swing over a gait period to achieve identification that is invariant to walking speed, limited clothing variations, hair style changes and shadows under feet. The match scores generated in the three phases are fused using weight-based score-level fusion for robust identification in the presence of missing and distorted frames, and occlusion in the scene. Experimental analyses on various publicly available data sets show that STS-DM outperforms several state-of-the-art gait recognition methods

    Vision-based techniques for gait recognition

    Full text link
    Global security concerns have raised a proliferation of video surveillance devices. Intelligent surveillance systems seek to discover possible threats automatically and raise alerts. Being able to identify the surveyed object can help determine its threat level. The current generation of devices provide digital video data to be analysed for time varying features to assist in the identification process. Commonly, people queue up to access a facility and approach a video camera in full frontal view. In this environment, a variety of biometrics are available - for example, gait which includes temporal features like stride period. Gait can be measured unobtrusively at a distance. The video data will also include face features, which are short-range biometrics. In this way, one can combine biometrics naturally using one set of data. In this paper we survey current techniques of gait recognition and modelling with the environment in which the research was conducted. We also discuss in detail the issues arising from deriving gait data, such as perspective and occlusion effects, together with the associated computer vision challenges of reliable tracking of human movement. Then, after highlighting these issues and challenges related to gait processing, we proceed to discuss the frameworks combining gait with other biometrics. We then provide motivations for a novel paradigm in biometrics-based human recognition, i.e. the use of the fronto-normal view of gait as a far-range biometrics combined with biometrics operating at a near distance

    Lidar-based Gait Analysis and Activity Recognition in a 4D Surveillance System

    Get PDF

    Feature selection for Lidar-based gait recognition

    Get PDF
    In this paper, we present a performance analysis of various descriptors suited to human gait analysis in Rotating Multi-Beam (RMB) Lidar measurement sequences. The gait descriptors for training and recognition are observed and extracted in realistic outdoor surveillance scenarios, where multiple pedestrians walk concurrently in the field of interest, their trajectories often intersect, while occlusions or background noise may affects the observation. For the Lidar scenes, we compared the modifications of five approaches proposed originally for optical cameras or Kinect measurements. Our results confirmed that efficient person re-identification can be achieved using a single Lidar sensor, even if it produces sparse point clouds

    Extending quality and covariate analyses for gait biometrics

    No full text
    Recognising humans by the way they walk has attracted a significant interest in recent years due to its potential use in a number of applications such as automated visual surveillance. Technologies utilising gait biometrics have the potential to provide safer society and improve quality of life. However, automated gait recognition is a very challenging research problem and some fundamental issues remain unsolved.At the moment, gait recognition performs well only when samples acquired in similar conditions are matched. An operational automated gait recognition system does not yet exist. The primary aim of the research presented in this thesis is to understand the main challenges associated with deployment of gait recognition and to propose novel solutions to some of the most fundamental issues. There has been lack of understanding of the effect of some subject dependent covariates on gait recognition performance. We have proposed a novel dataset that allows analyses of various covariates in a principled manner. The results of the database evaluation revealed that elapsed time does not affect recognition in the short to medium term, contrary to what other studies have concluded. The analyses show how other factors related to the subject affect recognition performance.Only few gait recognition approaches have been validated in real world conditions. We have collected a new dataset at two realistic locations. Using the database we have shown that there are many environment related factors that can affect performance. The quality of silhouettes has been identified as one of the most important issues for translating gait recognition research to the ‘real-world’. The existing quality algorithms proved insufficient and therefore we extended quality metrics and proposed new ways of improving signature quality and therefore performance. A new fully working automated system has been implemented.Experiments using the system in ‘real-world’ conditions have revealed additional challenges not present when analysing datasets of fixed size. In conclusion, the research has investigated many of the factors that affect current gait recognition algorithms and has presented novel approaches of dealing with some of the most important issues related to translating gait recognition to real-world environments
    corecore