77,306 research outputs found

    Partial Strategyproofness: Relaxing Strategyproofness for the Random Assignment Problem

    Get PDF
    We present partial strategyproofness, a new, relaxed notion of strategyproofness for studying the incentive properties of non-strategyproof assignment mechanisms. Informally, a mechanism is partially strategyproof if it makes truthful reporting a dominant strategy for those agents whose preference intensities differ sufficiently between any two objects. We demonstrate that partial strategyproofness is axiomatically motivated and yields a parametric measure for "how strategyproof" an assignment mechanism is. We apply this new concept to derive novel insights about the incentive properties of the probabilistic serial mechanism and different variants of the Boston mechanism.Comment: Working Pape

    Size versus truthfulness in the house allocation problem

    Get PDF
    We study the House Allocation problem (also known as the Assignment problem), i.e., the problem of allocating a set of objects among a set of agents, where each agent has ordinal preferences (possibly involving ties) over a subset of the objects. We focus on truthful mechanisms without monetary transfers for finding large Pareto optimal matchings. It is straightforward to show that no deterministic truthful mechanism can approximate a maximum cardinality Pareto optimal matching with ratio better than 2. We thus consider randomized mechanisms. We give a natural and explicit extension of the classical Random Serial Dictatorship Mechanism (RSDM) specifically for the House Allocation problem where preference lists can include ties. We thus obtain a universally truthful randomized mechanism for finding a Pareto optimal matching and show that it achieves an approximation ratio of eovere-1. The same bound holds even when agents have priorities (weights) and our goal is to find a maximum weight (as opposed to maximum cardinality) Pareto optimal matching. On the other hand we give a lower bound of 18 over 13 on the approximation ratio of any universally truthful Pareto optimal mechanism in settings with strict preferences. In the case that the mechanism must additionally be non-bossy, an improved lower bound of eovere-1 holds. This lower bound is tight given that RSDM for strict preference lists is non-bossy. We moreover interpret our problem in terms of the classical secretary problem and prove that our mechanism provides the best randomized strategy of the administrator who interviews the applicants

    Computation of order and volume fill rates for a base stock inventory control system with heterogeneous demand to investigate which customer class gets the best service

    Get PDF
    We consider a base stock inventory control system serving two customer classes whose demands are generated by two independent compound renewal processes. We show how to derive order and volume fill rates of each class. Based on assumptions about first order stochastic dominance we prove when one customer class will get the best service. That theoretical result is validated through a series of numerical experiments which also reveal that it is quite robust.Base stock policy; service measures; two customer classes; compound renewal processes

    Tractable Pathfinding for the Stochastic On-Time Arrival Problem

    Full text link
    We present a new and more efficient technique for computing the route that maximizes the probability of on-time arrival in stochastic networks, also known as the path-based stochastic on-time arrival (SOTA) problem. Our primary contribution is a pathfinding algorithm that uses the solution to the policy-based SOTA problem---which is of pseudo-polynomial-time complexity in the time budget of the journey---as a search heuristic for the optimal path. In particular, we show that this heuristic can be exceptionally efficient in practice, effectively making it possible to solve the path-based SOTA problem as quickly as the policy-based SOTA problem. Our secondary contribution is the extension of policy-based preprocessing to path-based preprocessing for the SOTA problem. In the process, we also introduce Arc-Potentials, a more efficient generalization of Stochastic Arc-Flags that can be used for both policy- and path-based SOTA. After developing the pathfinding and preprocessing algorithms, we evaluate their performance on two different real-world networks. To the best of our knowledge, these techniques provide the most efficient computation strategy for the path-based SOTA problem for general probability distributions, both with and without preprocessing.Comment: Submission accepted by the International Symposium on Experimental Algorithms 2016 and published by Springer in the Lecture Notes in Computer Science series on June 1, 2016. Includes typographical corrections and modifications to pre-processing made after the initial submission to SODA'15 (July 7, 2014

    Exploiting the robot kinematic redundancy for emotion conveyance to humans as a lower priority task

    Get PDF
    Current approaches do not allow robots to execute a task and simultaneously convey emotions to users using their body motions. This paper explores the capabilities of the Jacobian null space of a humanoid robot to convey emotions. A task priority formulation has been implemented in a Pepper robot which allows the specification of a primary task (waving gesture, transportation of an object, etc.) and exploits the kinematic redundancy of the robot to convey emotions to humans as a lower priority task. The emotions, defined by Mehrabian as points in the pleasure–arousal–dominance space, generate intermediate motion features (jerkiness, activity and gaze) that carry the emotional information. A map from this features to the joints of the robot is presented. A user study has been conducted in which emotional motions have been shown to 30 participants. The results show that happiness and sadness are very well conveyed to the user, calm is moderately well conveyed, and fear is not well conveyed. An analysis on the dependencies between the motion features and the emotions perceived by the participants shows that activity correlates positively with arousal, jerkiness is not perceived by the user, and gaze conveys dominance when activity is low. The results indicate a strong influence of the most energetic motions of the emotional task and point out new directions for further research. Overall, the results show that the null space approach can be regarded as a promising mean to convey emotions as a lower priority task.Postprint (author's final draft

    Data Envelopment Analysis Models of Investment Funds

    Get PDF
    Publisher PD

    Size versus truthfulness in the House Allocation problem

    Get PDF
    We study the House Allocation problem (also known as the Assignment problem), i.e., the problem of allocating a set of objects among a set of agents, where each agent has ordinal preferences (possibly involving ties) over a subset of the objects. We focus on truthful mechanisms without monetary transfers for finding large Pareto optimal matchings. It is straightforward to show that no deterministic truthful mechanism can approximate a maximum cardinality Pareto optimal matching with ratio better than 2. We thus consider randomised mechanisms. We give a natural and explicit extension of the classical Random Serial Dictatorship Mechanism (RSDM) specifically for the House Allocation problem where preference lists can include ties. We thus obtain a universally truthful randomised mechanism for finding a Pareto optimal matching and show that it achieves an approximation ratio of ee1\frac{e}{e-1}. The same bound holds even when agents have priorities (weights) and our goal is to find a maximum weight (as opposed to maximum cardinality) Pareto optimal matching. On the other hand we give a lower bound of 1813\frac{18}{13} on the approximation ratio of any universally truthful Pareto optimal mechanism in settings with strict preferences. In the case that the mechanism must additionally be non-bossy with an additional technical assumption, we show by utilising a result of Bade that an improved lower bound of ee1\frac{e}{e-1} holds. This lower bound is tight since RSDM for strict preference lists is non-bossy. We moreover interpret our problem in terms of the classical secretary problem and prove that our mechanism provides the best randomised strategy of the administrator who interviews the applicants.Comment: To appear in Algorithmica (preliminary version appeared in the Proceedings of EC 2014

    Enhance maintenance problem recognition techniques and its application to palm oil mills

    Get PDF
    This paper discusses the application of enhanced maintenance problem recognition techniques. The main contribution of this study is the proposed combined techniques, namely snapshot model, failure mode, effect and criticality analysis (FMECA), Pareto analysis, and decision analysis by using information technology (IT). The snapshot model is part of the maintenance modelling technique while FMECA, Pareto analysis, and decision analysis are part of maintenance reliability techniques. Each of the techniques and the proposed combined techniques is explained. The case study used for this enhanced technique was the palm oil mills maintenance problem. The result and possible further enhancement is also discussed
    corecore