18,174 research outputs found

    Trusted Launch of Virtual Machine Instances in Public IaaS Environments

    Get PDF
    Cloud computing and Infrastructure-as-a-Service (IaaS) are emerging and promising technologies, however their adoption is hampered by data security concerns. At the same time, Trusted Computing (TC) is experiencing an increasing interest as a security mechanism for IaaS. In this paper we present a protocol to ensure the launch of a virtual machine (VM) instance on a trusted remote compute host. Relying on Trusted Platform Module operations such as binding and sealing to provide integrity guarantees for clients that require a trusted VM launch, we have designed a trusted launch protocol for VM instances in public IaaS environments. We also present a proof-of-concept implementation of the protocol based on OpenStack, an open-source IaaS platform. The results provide a basis for the use of TC mechanisms within IaaS platforms and pave the way for a wider applicability of TC to IaaS security

    Trusted Launch of Generic Virtual Machine Images in Public IaaS Environments

    Get PDF
    Cloud computing and Infrastructure-as-a-Service (IaaS) are emerging and promising technologies, however their faster-pased adoption is hampered by data security concerns. In the same time, Trusted Computing (TC) is experiencing a revived interest as a security mechanism for IaaS. We address the lack of an implementable mechanism to ensure the launch of a virtual machine (VM) instance on a trusted remote host. Relying on Trusted Platform Modules operations such as binding and sealing to provide integrity guarantees for clients that require a trusted VM launch, we have designed a trusted launch protocol for generic VM images in public IaaS environments. We also present a proof-of-concept implemen- tation of the protocol based on OpenStack, an open-source IaaS platform. The results provide a basis for use of TC mechanisms within IaaS platforms and pave the way for a wider applicability of TC to IaaS security

    Trusted Launch of Virtual Machine Instances in Public IaaS Environments

    Get PDF
    Cloud computing and Infrastructure-as-a-Service (IaaS) are emerging and promising technologies, however their adoption is hampered by data security concerns. At the same time, Trusted Computing (TC) is experiencing an increasing interest as a security mechanism for IaaS. In this paper we present a protocol to ensure the launch of a virtual machine (VM) instance on a trusted remote compute host. Relying on Trusted Platform Module operations such as binding and sealing to provide integrity guarantees for clients that require a trusted VM launch, we have designed a trusted launch protocol for VM instances in public IaaS environments. We also present a proof-of-concept implementation of the protocol based on OpenStack, an open-source IaaS platform. The results provide a basis for the use of TC mechanisms within IaaS platforms and pave the way for a wider applicability of TC to IaaS security

    Trusted Launch of Virtual Machine Instances in Public IaaS Environments

    Get PDF
    Cloud computing and Infrastructure-as-a-Service (IaaS) are emerging and promising technologies, however their adoption is hampered by data security concerns. At the same time, Trusted Computing (TC) is experiencing an increasing interest as a security mechanism for IaaS. In this paper we present a protocol to ensure the launch of a virtual machine (VM) instance on a trusted remote compute host. Relying on Trusted Platform Module operations such as binding and sealing to provide integrity guarantees for clients that require a trusted VM launch, we have designed a trusted launch protocol for VM instances in public IaaS environments. We also present a proof-of-concept implementation of the protocol based on OpenStack, an open-source IaaS platform. The results provide a basis for the use of TC mechanisms within IaaS platforms and pave the way for a wider applicability of TC to IaaS security

    Trusted Computing and Secure Virtualization in Cloud Computing

    Get PDF
    Large-scale deployment and use of cloud computing in industry is accompanied and in the same time hampered by concerns regarding protection of data handled by cloud computing providers. One of the consequences of moving data processing and storage off company premises is that organizations have less control over their infrastructure. As a result, cloud service (CS) clients must trust that the CS provider is able to protect their data and infrastructure from both external and internal attacks. Currently however, such trust can only rely on organizational processes declared by the CS provider and can not be remotely verified and validated by an external party. Enabling the CS client to verify the integrity of the host where the virtual machine instance will run, as well as to ensure that the virtual machine image has not been tampered with, are some steps towards building trust in the CS provider. Having the tools to perform such verifications prior to the launch of the VM instance allows the CS clients to decide in runtime whether certain data should be stored- or calculations should be made on the VM instance offered by the CS provider. This thesis combines three components -- trusted computing, virtualization technology and cloud computing platforms -- to address issues of trust and security in public cloud computing environments. Of the three components, virtualization technology has had the longest evolution and is a cornerstone for the realization of cloud computing. Trusted computing is a recent industry initiative that aims to implement the root of trust in a hardware component, the trusted platform module. The initiative has been formalized in a set of specifications and is currently at version 1.2. Cloud computing platforms pool virtualized computing, storage and network resources in order to serve a large number of customers customers that use a multi-tenant multiplexing model to offer on-demand self-service over broad network. Open source cloud computing platforms are, similar to trusted computing, a fairly recent technology in active development. The issue of trust in public cloud environments is addressed by examining the state of the art within cloud computing security and subsequently addressing the issues of establishing trust in the launch of a generic virtual machine in a public cloud environment. As a result, the thesis proposes a trusted launch protocol that allows CS clients to verify and ensure the integrity of the VM instance at launch time, as well as the integrity of the host where the VM instance is launched. The protocol relies on the use of Trusted Platform Module (TPM) for key generation and data protection. The TPM also plays an essential part in the integrity attestation of the VM instance host. Along with a theoretical, platform-agnostic protocol, the thesis also describes a detailed implementation design of the protocol using the OpenStack cloud computing platform. In order the verify the implementability of the proposed protocol, a prototype implementation has built using a distributed deployment of OpenStack. While the protocol covers only the trusted launch procedure using generic virtual machine images, it presents a step aimed to contribute towards the creation of a secure and trusted public cloud computing environment

    Privacy in cloud computing

    Get PDF
    Tese de mestrado em Segurança Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2010O paradigma cloud computing está progressivamente a integrar-se nas tecnologias de informação e é também visto por muitos como a próxima grande viragem na indústria da computação. A sua integração significa grandes alterações no modo como olhamos para a segurança dos dados de empresas que decidem confiar informação confidencial aos fornecedores de serviços cloud. Esta alteração implica um nível muito elevado de confiança no fornecedor do serviço. Ao mudar para a cloud, uma empresa relega para o fornecedor do serviço controlo sobre os seus dados, porque estes vão executar em hardware que é propriedade do fornecedor e sobre o qual a empresa não tem qualquer controlo. Este facto irá pesar muito na decisão, de mudar para a cloud, de empresas que tratam informação delicada (p.ex., informação médica ou financeira). Neste trabalho propomos demonstrar de que forma um administrador malicioso, com acesso ao hardware do fornecedor, consegue violar a privacidade dos dados que o utilizador da cloud confiou ao prestador desses serviços. Definimos como objectivo uma análise detalhada de estratégias de ataque que poderão ajudar um administrador malicioso a quebrar a privacidade de clientes da cloud, bem como a eficácia demonstrada contra esses mesmos ataques por mecanismos de protecção já propostos para a cloud. Pretendemos que este trabalho seja capaz de alertar a comunidade científica para a gravidade dos problemas de segurança que actualmente existem na cloud e, que ao mesmo tempo, sirva como motivação para uma acção célere desta, de forma a encontrar soluções para esses problemas.The paradigm of cloud computing is progressively integrating itself in the Information Technology industry and it is also seen by many experts as the next big shift in this industry. This integration implies considerable alterations in the security schemes used to ensure that the privacy of confidential information, companies entrust to the cloud provider, is kept. It also means that the level of trust in the cloud provider must be considerably high. When moving to the cloud, a company relinquishes control over its data to the cloud provider. This happens because, when operating in the cloud, the data is going to execute on top of the hardware owned by the cloud provider and, in this scenario, the client has no control over that hardware. Companies that deal with sensitive data (e.g., medical or financial records) have to weigh the importance of this problem when considering moving their data to the cloud. In this work, we provide a demonstration of how a malicious administrator, with access to the hardware of the cloud provider, is capable of violating the privacy of the data entrusted to the cloud provider by his clients. Our objective is to offer a detailed analysis of attack strategies that can be used by a malicious administrator to break the privacy of cloud clients, as well as the level of efficacy demonstrated by some protection mechanism that have already been proposed for the cloud. We also hope that this work is capable of capturing the attention of the research community to the security problems existent in the cloud and, that at the same time, it works as a motivation factor for a prompt action in order to find solutions for these problems
    • …
    corecore