3,151 research outputs found

    Disease modeling using Evolved Discriminate Function

    Get PDF
    Precocious diagnosis increases the survival time and patient quality of life. It is a binary classification, exhaustively studied in the literature. This paper innovates proposing the application of genetic programming to obtain a discriminate function. This function contains the disease dynamics used to classify the patients with as little false negative diagnosis as possible. If its value is greater than zero then it means that the patient is ill, otherwise healthy. A graphical representation is proposed to show the influence of each dataset attribute in the discriminate function. The experiment deals with Breast Cancer and Thrombosis & Collagen diseases diagnosis. The main conclusion is that the discriminate function is able to classify the patient using numerical clinical data, and the graphical representation displays patterns that allow understanding of the model

    On Cognitive Preferences and the Plausibility of Rule-based Models

    Get PDF
    It is conventional wisdom in machine learning and data mining that logical models such as rule sets are more interpretable than other models, and that among such rule-based models, simpler models are more interpretable than more complex ones. In this position paper, we question this latter assumption by focusing on one particular aspect of interpretability, namely the plausibility of models. Roughly speaking, we equate the plausibility of a model with the likeliness that a user accepts it as an explanation for a prediction. In particular, we argue that, all other things being equal, longer explanations may be more convincing than shorter ones, and that the predominant bias for shorter models, which is typically necessary for learning powerful discriminative models, may not be suitable when it comes to user acceptance of the learned models. To that end, we first recapitulate evidence for and against this postulate, and then report the results of an evaluation in a crowd-sourcing study based on about 3.000 judgments. The results do not reveal a strong preference for simple rules, whereas we can observe a weak preference for longer rules in some domains. We then relate these results to well-known cognitive biases such as the conjunction fallacy, the representative heuristic, or the recogition heuristic, and investigate their relation to rule length and plausibility.Comment: V4: Another rewrite of section on interpretability to clarify focus on plausibility and relation to interpretability, comprehensibility, and justifiabilit

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Brain Cancer Antibody Display Classification

    Get PDF
    This article explores real data on brain cancer. This type of biological data has a few particularities like a great number of attributes – antibodies and genes. However the number of entries is rather small because the data have to be obtained from real patients. This process is time consuming and very costly. Due to that, this research provides detailed data description as well as analyzes their particularities, type and structure. Correspondingly, classification rules are also difficult to discover. This research is dedicated to finding applications of classification methods aimed at determining interconnections that could be used to classify brain cancer. Working exactly with such unique data has a great practical value, because the data obtained can be used in future to continue the research and in practical diagnostics with the possibility to offer the data to biologists for interpretation. To speed up the obtaining of interconnections, only important attributes were used. Various methods of interconnection determination were employed. Conclusions about this type of data analysis, obtaining classification rules and the precision of obtained rules are made and directions of future work are outlined
    • …
    corecore