4,209 research outputs found

    Analysis Of The Effect Filter Order Number On Noise Canceller System Using STM32F4

    Get PDF
    Communication plays an important role in society. This can be seen in the amount of information that is spread, such as information in the form of sound, images, and videos. But communicating is not always easy. Due to the large number of sounds emitted from different sources, other sounds will be disturbed. The interference caused by noise can distort the information signal, leading a sine wave to integrate a minor noise signal. As a result, the receiver cannot differentiate the actual information signal and the added noise. This study proposed a noise-reduction system by analyzing the effect of the number of filter orders on the noise canceler system. The information signal will be processed using the STM32F4 noise canceller system, which will then be filtered using an adaptive filter with a Finite Impulse Response (FIR) structure and the Least Mean Square (LMS) algorithm. The test results show that the best SNR value is obtained at Order 40 of 5.3671 dB at a sound duration of 14 seconds, while the best PSNR value is obtained at Order 40 of 21.3557 at a sound duration of 9 seconds, and the higher the filter order value, the smaller the MSE value

    Tree-Structured Nonlinear Adaptive Signal Processing

    Get PDF
    In communication systems, nonlinear adaptive filtering has become increasingly popular in a variety of applications such as channel equalization, echo cancellation and speech coding. However, existing nonlinear adaptive filters such as polynomial (truncated Volterra series) filters and multilayer perceptrons suffer from a number of problems. First, although high Order polynomials can approximate complex nonlinearities, they also train very slowly. Second, there is no systematic and efficient way to select their structure. As for multilayer perceptrons, they have a very complicated structure and train extremely slowly Motivated by the success of classification and regression trees on difficult nonlinear and nonparametfic problems, we propose the idea of a tree-structured piecewise linear adaptive filter. In the proposed method each node in a tree is associated with a linear filter restricted to a polygonal domain, and this is done in such a way that each pruned subtree is associated with a piecewise linear filter. A training sequence is used to adaptively update the filter coefficients and domains at each node, and to select the best pruned subtree and the corresponding piecewise linear filter. The tree structured approach offers several advantages. First, it makes use of standard linear adaptive filtering techniques at each node to find the corresponding Conditional linear filter. Second, it allows for efficient selection of the subtree and the corresponding piecewise linear filter of appropriate complexity. Overall, the approach is computationally efficient and conceptually simple. The tree-structured piecewise linear adaptive filter bears some similarity to classification and regression trees. But it is actually quite different from a classification and regression tree. Here the terminal nodes are not just assigned a region and a class label or a regression value, but rather represent: a linear filter with restricted domain, It is also different in that classification and regression trees are determined in a batch mode offline, whereas the tree-structured adaptive filter is determined recursively in real-time. We first develop the specific structure of a tree-structured piecewise linear adaptive filter and derive a stochastic gradient-based training algorithm. We then carry out a rigorous convergence analysis of the proposed training algorithm for the tree-structured filter. Here we show the mean-square convergence of the adaptively trained tree-structured piecewise linear filter to the optimal tree-structured piecewise linear filter. Same new techniques are developed for analyzing stochastic gradient algorithms with fixed gains and (nonstandard) dependent data. Finally, numerical experiments are performed to show the computational and performance advantages of the tree-structured piecewise linear filter over linear and polynomial filters for equalization of high frequency channels with severe intersymbol interference, echo cancellation in telephone networks and predictive coding of speech signals

    Digital Filters

    Get PDF
    The new technology advances provide that a great number of system signals can be easily measured with a low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc. Digital filters are the most versatile, practical and effective methods for extracting the information necessary from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and internal conditions. Presented in this book are the most advanced digital filters including different case studies and the most relevant literature

    Conditional maximum likelihood timing recovery: estimators and bounds

    Get PDF
    This paper is concerned with the derivation of new estimators and performance bounds for the problem of timing estimation of (linearly) digitally modulated signals. The conditional maximum likelihood (CML) method is adopted, in contrast to the classical low-SNR unconditional ML (UML) formulation that is systematically applied in the literature for the derivation of non-data-aided (NDA) timing-error-detectors (TEDs). A new CML TED is derived and proved to be self-noise free, in contrast to the conventional low-SNR-UML TED. In addition, the paper provides a derivation of the conditional Cramér–Rao Bound (CRB ), which is higher (less optimistic) than the modified CRB (MCRB) [which is only reached by decision-directed (DD) methods]. It is shown that the CRB is a lower bound on the asymptotic statistical accuracy of the set of consistent estimators that are quadratic with respect to the received signal. Although the obtained bound is not general, it applies to most NDA synchronizers proposed in the literature. A closed-form expression of the conditional CRB is obtained, and numerical results confirm that the CML TED attains the new bound for moderate to high Eg/No.Peer Reviewe
    corecore