2,259 research outputs found

    Optimal decremental connectivity in planar graphs

    Get PDF
    We show an algorithm for dynamic maintenance of connectivity information in an undirected planar graph subject to edge deletions. Our algorithm may answer connectivity queries of the form `Are vertices uu and vv connected with a path?' in constant time. The queries can be intermixed with any sequence of edge deletions, and the algorithm handles all updates in O(n)O(n) time. This results improves over previously known O(nlog⁥n)O(n \log n) time algorithm

    Hitting forbidden minors: Approximation and Kernelization

    Get PDF
    We study a general class of problems called F-deletion problems. In an F-deletion problem, we are asked whether a subset of at most kk vertices can be deleted from a graph GG such that the resulting graph does not contain as a minor any graph from the family F of forbidden minors. We obtain a number of algorithmic results on the F-deletion problem when F contains a planar graph. We give (1) a linear vertex kernel on graphs excluding tt-claw K1,tK_{1,t}, the star with tt leves, as an induced subgraph, where tt is a fixed integer. (2) an approximation algorithm achieving an approximation ratio of O(log⁥3/2OPT)O(\log^{3/2} OPT), where OPTOPT is the size of an optimal solution on general undirected graphs. Finally, we obtain polynomial kernels for the case when F contains graph Ξc\theta_c as a minor for a fixed integer cc. The graph Ξc\theta_c consists of two vertices connected by cc parallel edges. Even though this may appear to be a very restricted class of problems it already encompasses well-studied problems such as {\sc Vertex Cover}, {\sc Feedback Vertex Set} and Diamond Hitting Set. The generic kernelization algorithm is based on a non-trivial application of protrusion techniques, previously used only for problems on topological graph classes

    A tree-decomposed transfer matrix for computing exact Potts model partition functions for arbitrary graphs, with applications to planar graph colourings

    Get PDF
    Combining tree decomposition and transfer matrix techniques provides a very general algorithm for computing exact partition functions of statistical models defined on arbitrary graphs. The algorithm is particularly efficient in the case of planar graphs. We illustrate it by computing the Potts model partition functions and chromatic polynomials (the number of proper vertex colourings using Q colours) for large samples of random planar graphs with up to N=100 vertices. In the latter case, our algorithm yields a sub-exponential average running time of ~ exp(1.516 sqrt(N)), a substantial improvement over the exponential running time ~ exp(0.245 N) provided by the hitherto best known algorithm. We study the statistics of chromatic roots of random planar graphs in some detail, comparing the findings with results for finite pieces of a regular lattice.Comment: 5 pages, 3 figures. Version 2 has been substantially expanded. Version 3 shows that the worst-case running time is sub-exponential in the number of vertice

    Homology-based Distributed Coverage Hole Detection in Wireless Sensor Networks

    Get PDF
    Homology theory provides new and powerful solutions to address the coverage problems in wireless sensor networks (WSNs). They are based on algebraic objects, such as Cech complex and Rips complex. Cech complex gives accurate information about coverage quality but requires a precise knowledge of the relative locations of nodes. This assumption is rather strong and hard to implement in practical deployments. Rips complex provides an approximation of Cech complex. It is easier to build and does not require any knowledge of nodes location. This simplicity is at the expense of accuracy. Rips complex can not always detect all coverage holes. It is then necessary to evaluate its accuracy. This work proposes to use the proportion of the area of undiscovered coverage holes as performance criteria. Investigations show that it depends on the ratio between communication and sensing radii of a sensor. Closed-form expressions for lower and upper bounds of the accuracy are also derived. For those coverage holes which can be discovered by Rips complex, a homology-based distributed algorithm is proposed to detect them. Simulation results are consistent with the proposed analytical lower bound, with a maximum difference of 0.5%. Upper bound performance depends on the ratio of communication and sensing radii. Simulations also show that the algorithm can localize about 99% coverage holes in about 99% cases

    Structural Rounding: Approximation Algorithms for Graphs Near an Algorithmically Tractable Class

    Get PDF
    We develop a framework for generalizing approximation algorithms from the structural graph algorithm literature so that they apply to graphs somewhat close to that class (a scenario we expect is common when working with real-world networks) while still guaranteeing approximation ratios. The idea is to edit a given graph via vertex- or edge-deletions to put the graph into an algorithmically tractable class, apply known approximation algorithms for that class, and then lift the solution to apply to the original graph. We give a general characterization of when an optimization problem is amenable to this approach, and show that it includes many well-studied graph problems, such as Independent Set, Vertex Cover, Feedback Vertex Set, Minimum Maximal Matching, Chromatic Number, (l-)Dominating Set, Edge (l-)Dominating Set, and Connected Dominating Set. To enable this framework, we develop new editing algorithms that find the approximately-fewest edits required to bring a given graph into one of a few important graph classes (in some cases these are bicriteria algorithms which simultaneously approximate both the number of editing operations and the target parameter of the family). For bounded degeneracy, we obtain an O(r log{n})-approximation and a bicriteria (4,4)-approximation which also extends to a smoother bicriteria trade-off. For bounded treewidth, we obtain a bicriteria (O(log^{1.5} n), O(sqrt{log w}))-approximation, and for bounded pathwidth, we obtain a bicriteria (O(log^{1.5} n), O(sqrt{log w} * log n))-approximation. For treedepth 2 (related to bounded expansion), we obtain a 4-approximation. We also prove complementary hardness-of-approximation results assuming P != NP: in particular, these problems are all log-factor inapproximable, except the last which is not approximable below some constant factor 2 (assuming UGC)
    • 

    corecore