196 research outputs found

    The posterity of Zadeh's 50-year-old paper: A retrospective in 101 Easy Pieces – and a Few More

    Get PDF
    International audienceThis article was commissioned by the 22nd IEEE International Conference of Fuzzy Systems (FUZZ-IEEE) to celebrate the 50th Anniversary of Lotfi Zadeh's seminal 1965 paper on fuzzy sets. In addition to Lotfi's original paper, this note itemizes 100 citations of books and papers deemed “important (significant, seminal, etc.)” by 20 of the 21 living IEEE CIS Fuzzy Systems pioneers. Each of the 20 contributors supplied 5 citations, and Lotfi's paper makes the overall list a tidy 101, as in “Fuzzy Sets 101”. This note is not a survey in any real sense of the word, but the contributors did offer short remarks to indicate the reason for inclusion (e.g., historical, topical, seminal, etc.) of each citation. Citation statistics are easy to find and notoriously erroneous, so we refrain from reporting them - almost. The exception is that according to Google scholar on April 9, 2015, Lotfi's 1965 paper has been cited 55,479 times

    Coevolutionary fuzzy modeling

    Get PDF
    This thesis presents Fuzzy CoCo, a novel approach for system design, conducive to explaining human decisions. Based on fuzzy logic and coevolutionary computation, Fuzzy CoCo is a methodology for constructing systems able to accurately predict the outcome of a human decision-making process, while providing an understandable explanation of the underlying reasoning. Fuzzy logic provides a formal framework for constructing systems exhibiting both good numeric performance (precision) and linguistic representation (interpretability). From a numeric point of view, fuzzy systems exhibit nonlinear behavior and can handle imprecise and incomplete information. Linguistically, they represent knowledge in the form of rules, a natural way for explaining decision processes. Fuzzy modeling —meaning the construction of fuzzy systems— is an arduous task, demanding the identification of many parameters. This thesis analyses the fuzzy-modeling problem and different approaches to coping with it, focusing on evolutionary fuzzy modeling —the design of fuzzy inference systems using evolutionary algorithms— which constitutes the methodological base of my approach. In order to promote this analysis the parameters of a fuzzy system are classified into four categories: logic, structural, connective, and operational. The central contribution of this work is the use of an advanced evolutionary technique —cooperative coevolution— for dealing with the simultaneous design of connective and operational parameters. Cooperative coevolutionary fuzzy modeling succeeds in overcoming several limitations exhibited by other standard evolutionary approaches: stagnation, convergence to local optima, and computational costliness. Designing interpretable systems is a prime goal of my approach, which I study thoroughly herein. Based on a set of semantic and syntactic criteria, regarding the definition of linguistic concepts and their causal connections, I propose a number of strategies for producing more interpretable fuzzy systems. These strategies are implemented in Fuzzy CoCo, resulting in a modeling methodology providing high numeric precision, while incurring as little a loss of interpretability as possible. After testing Fuzzy CoCo on a benchmark problem —Fisher's Iris data— I successfully apply the algorithm to model the decision processes involved in two breast-cancer diagnostic problems: the WBCD problem and the Catalonia mammography interpretation problem. For the WBCD problem, Fuzzy CoCo produces systems both of high performance and high interpretability, comparable (if not better) than the best systems demonstrated to date. For the Catalonia problem, an evolved high-performance system was embedded within a web-based tool —called COBRA— for aiding radiologists in mammography interpretation. Several aspects of Fuzzy CoCo are thoroughly analyzed to provide a deeper understanding of the method. These analyses show the consistency of the results. They also help derive a stepwise guide to applying Fuzzy CoCo, and a set of qualitative relationships between some of its parameters that facilitate setting up the algorithm. Finally, this work proposes and explores preliminarily two extensions to the method: Island Fuzzy CoCo and Incremental Fuzzy CoCo, which together with the original CoCo constitute a family of coevolutionary fuzzy modeling techniques. The aim of these extensions is to guide the choice of an adequate number of rules for a given problem. While Island Fuzzy CoCo performs an extended search over different problem sizes, Incremental Fuzzy CoCo bases its search power on a mechanism of incremental evolution

    From approximative to descriptive fuzzy models

    Get PDF

    Sistemas granulares evolutivos

    Get PDF
    Orientador: Fernando Antonio Campos GomideTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia ElĂ©trica e de ComputaçãoResumo: Recentemente tem-se observado um crescente interesse em abordagens de modelagem computacional para lidar com fluxos de dados do mundo real. MĂ©todos e algoritmos tĂȘm sido propostos para obtenção de conhecimento a partir de conjuntos de dados muito grandes e, a princĂ­pio, sem valor aparente. Este trabalho apresenta uma plataforma computacional para modelagem granular evolutiva de fluxos de dados incertos. Sistemas granulares evolutivos abrangem uma variedade de abordagens para modelagem on-line inspiradas na forma com que os humanos lidam com a complexidade. Esses sistemas exploram o fluxo de informação em ambiente dinĂąmico e extrai disso modelos que podem ser linguisticamente entendidos. Particularmente, a granulação da informação Ă© uma tĂ©cnica natural para dispensar atenção a detalhes desnecessĂĄrios e enfatizar transparĂȘncia, interpretabilidade e escalabilidade de sistemas de informação. Dados incertos (granulares) surgem a partir de percepçÔes ou descriçÔes imprecisas do valor de uma variĂĄvel. De maneira geral, vĂĄrios fatores podem afetar a escolha da representação dos dados tal que o objeto representativo reflita o significado do conceito que ele estĂĄ sendo usado para representar. Neste trabalho sĂŁo considerados dados numĂ©ricos, intervalares e fuzzy; e modelos intervalares, fuzzy e neuro-fuzzy. A aprendizagem de sistemas granulares Ă© baseada em algoritmos incrementais que constroem a estrutura do modelo sem conhecimento anterior sobre o processo e adapta os parĂąmetros do modelo sempre que necessĂĄrio. Este paradigma de aprendizagem Ă© particularmente importante uma vez que ele evita a reconstrução e o retreinamento do modelo quando o ambiente muda. Exemplos de aplicação em classificação, aproximação de função, predição de sĂ©ries temporais e controle usando dados sintĂ©ticos e reais ilustram a utilidade das abordagens de modelagem granular propostas. O comportamento de fluxos de dados nĂŁo-estacionĂĄrios com mudanças graduais e abruptas de regime Ă© tambĂ©m analisado dentro do paradigma de computação granular evolutiva. Realçamos o papel da computação intervalar, fuzzy e neuro-fuzzy em processar dados incertos e prover soluçÔes aproximadas de alta qualidade e sumĂĄrio de regras de conjuntos de dados de entrada e saĂ­da. As abordagens e o paradigma introduzidos constituem uma extensĂŁo natural de sistemas inteligentes evolutivos para processamento de dados numĂ©ricos a sistemas granulares evolutivos para processamento de dados granularesAbstract: In recent years there has been increasing interest in computational modeling approaches to deal with real-world data streams. Methods and algorithms have been proposed to uncover meaningful knowledge from very large (often unbounded) data sets in principle with no apparent value. This thesis introduces a framework for evolving granular modeling of uncertain data streams. Evolving granular systems comprise an array of online modeling approaches inspired by the way in which humans deal with complexity. These systems explore the information flow in dynamic environments and derive from it models that can be linguistically understood. Particularly, information granulation is a natural technique to dispense unnecessary details and emphasize transparency, interpretability and scalability of information systems. Uncertain (granular) data arise from imprecise perception or description of the value of a variable. Broadly stated, various factors can affect one's choice of data representation such that the representing object conveys the meaning of the concept it is being used to represent. Of particular concern to this work are numerical, interval, and fuzzy types of granular data; and interval, fuzzy, and neurofuzzy modeling frameworks. Learning in evolving granular systems is based on incremental algorithms that build model structure from scratch on a per-sample basis and adapt model parameters whenever necessary. This learning paradigm is meaningful once it avoids redesigning and retraining models all along if the system changes. Application examples in classification, function approximation, time-series prediction and control using real and synthetic data illustrate the usefulness of the granular approaches and framework proposed. The behavior of nonstationary data streams with gradual and abrupt regime shifts is also analyzed in the realm of evolving granular computing. We shed light upon the role of interval, fuzzy, and neurofuzzy computing in processing uncertain data and providing high-quality approximate solutions and rule summary of input-output data sets. The approaches and framework introduced constitute a natural extension of evolving intelligent systems over numeric data streams to evolving granular systems over granular data streamsDoutoradoAutomaçãoDoutor em Engenharia ElĂ©tric

    Computational Intelligence for classification and forecasting of solar photovoltaic energy production and energy consumption in buildings

    Get PDF
    This thesis presents a few novel applications of Computational Intelligence techniques in the field of energy-related problems. More in detail, we refer to the assessment of the energy produced by a solar photovoltaic installation and to the evaluation of building’s energy consumptions. In fact, recently, thanks also to the growing evolution of technologies, the energy sector has drawn the attention of the research community in proposing useful tools to deal with issues of energy efficiency in buildings and with solar energy production management. Thus, we will address two kinds of problem. The first problem is related to the efficient management of solar photovoltaic energy installations, e.g., for efficiently monitoring the performance as well as for finding faults, or for planning the energy distribution in the electrical grid. This problem was faced with two different approaches: a forecasting approach and a fuzzy classification approach for energy production estimation, starting from some knowledge about environmental variables. The forecasting system developed is able to reproduce the instantaneous curve of daily energy produced by the solar panels of the installation, with a forecasting horizon of one day. It combines neural networks and time series analysis models. The fuzzy classification system, rather, extracts some linguistic knowledge about the amount of energy produced by the installation, exploiting an optimal fuzzy rule base and genetic algorithms. The developed model is the result of a novel hierarchical methodology for building fuzzy systems, which may be applied in several areas. The second problem is related to energy efficiency in buildings, for cost reduction and load scheduling purposes, and was tackled by proposing a forecasting system of energy consumption in office buildings. The proposed system exploits a neural network to estimate the energy consumption due to lighting on a time interval of a few hours, starting from considerations on available natural daylight

    IMPROVING UNDERSTANDABILITY AND UNCERTAINTY MODELING OF DATA USING FUZZY LOGIC SYSTEMS

    Get PDF
    The need for automation, optimality and efficiency has made modern day control and monitoring systems extremely complex and data abundant. However, the complexity of the systems and the abundance of raw data has reduced the understandability and interpretability of data which results in a reduced state awareness of the system. Furthermore, different levels of uncertainty introduced by sensors and actuators make interpreting and accurately manipulating systems difficult. Classical mathematical methods lack the capability to capture human knowledge and increase understandability while modeling such uncertainty. Fuzzy Logic has been shown to alleviate both these problems by introducing logic based on vague terms that rely on human understandable terms. The use of linguistic terms and simple consequential rules increase the understandability of system behavior as well as data. Use of vague terms and modeling data from non-discrete prototypes enables modeling of uncertainty. However, due to recent trends, the primary research of fuzzy logic have been diverged from the basic concept of understandability. Furthermore, high computational costs to achieve robust uncertainty modeling have led to restricted use of such fuzzy systems in real-world applications. Thus, the goal of this dissertation is to present algorithms and techniques that improve understandability and uncertainty modeling using Fuzzy Logic Systems. In order to achieve this goal, this dissertation presents the following major contributions: 1) a novel methodology for generating Fuzzy Membership Functions based on understandability, 2) Linguistic Summarization of data using if-then type consequential rules, and 3) novel Shadowed Type-2 Fuzzy Logic Systems for uncertainty modeling. Finally, these presented techniques are applied to real world systems and data to exemplify their relevance and usage

    Finding the online cry for help : automatic text classification for suicide prevention

    Get PDF
    Successful prevention of suicide, a serious public health concern worldwide, hinges on the adequate detection of suicide risk. While online platforms are increasingly used for expressing suicidal thoughts, manually monitoring for such signals of distress is practically infeasible, given the information overload suicide prevention workers are confronted with. In this thesis, the automatic detection of suicide-related messages is studied. It presents the first classification-based approach to online suicidality detection, and focuses on Dutch user-generated content. In order to evaluate the viability of such a machine learning approach, we developed a gold standard corpus, consisting of message board and blog posts. These were manually labeled according to a newly developed annotation scheme, grounded in suicide prevention practice. The scheme provides for the annotation of a post's relevance to suicide, and the subject and severity of a suicide threat, if any. This allowed us to derive two tasks: the detection of suicide-related posts, and of severe, high-risk content. In a series of experiments, we sought to determine how well these tasks can be carried out automatically, and which information sources and techniques contribute to classification performance. The experimental results show that both types of messages can be detected with high precision. Therefore, the amount of noise generated by the system is minimal, even on very large datasets, making it usable in a real-world prevention setting. Recall is high for the relevance task, but at around 60%, it is considerably lower for severity. This is mainly attributable to implicit references to suicide, which often go undetected. We found a variety of information sources to be informative for both tasks, including token and character ngram bags-of-words, features based on LSA topic models, polarity lexicons and named entity recognition, and suicide-related terms extracted from a background corpus. To improve classification performance, the models were optimized using feature selection, hyperparameter, or a combination of both. A distributed genetic algorithm approach proved successful in finding good solutions for this complex search problem, and resulted in more robust models. Experiments with cascaded classification of the severity task did not reveal performance benefits over direct classification (in terms of F1-score), but its structure allows the use of slower, memory-based learning algorithms that considerably improved recall. At the end of this thesis, we address a problem typical of user-generated content: noise in the form of misspellings, phonetic transcriptions and other deviations from the linguistic norm. We developed an automatic text normalization system, using a cascaded statistical machine translation approach, and applied it to normalize the data for the suicidality detection tasks. Subsequent experiments revealed that, compared to the original data, normalized data resulted in fewer and more informative features, and improved classification performance. This extrinsic evaluation demonstrates the utility of automatic normalization for suicidality detection, and more generally, text classification on user-generated content

    Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling

    Get PDF
    This paper aims at providing an in-depth overview of designing interpretable fuzzy inference models from data within a unified framework. The objective of complex system modelling is to develop reliable and understandable models for human being to get insights into complex real-world systems whose first-principle models are unknown. Because system behaviour can be described naturally as a series of linguistic rules, data-driven fuzzy modelling becomes an attractive and widely used paradigm for this purpose. However, fuzzy models constructed from data by adaptive learning algorithms usually suffer from the loss of model interpretability. Model accuracy and interpretability are two conflicting objectives, so interpretation preservation during adaptation in data-driven fuzzy system modelling is a challenging task, which has received much attention in fuzzy system modelling community. In order to clearly discriminate the different roles of fuzzy sets, input variables, and other components in achieving an interpretable fuzzy model, a taxonomy of fuzzy model interpretability is first proposed in terms of low-level interpretability and high-level interpretability in this paper. The low-level interpretability of fuzzy models refers to fuzzy model interpretability achieved by optimizing the membership functions in terms of semantic criteria on fuzzy set level, while the high-level interpretability refers to fuzzy model interpretability obtained by dealing with the coverage, completeness, and consistency of the rules in terms of the criteria on fuzzy rule level. Some criteria for low-level interpretability and high-level interpretability are identified, respectively. Different data-driven fuzzy modelling techniques in the literature focusing on the interpretability issues are reviewed and discussed from the perspective of low-level interpretability and high-level interpretability. Furthermore, some open problems about interpretable fuzzy models are identified and some potential new research directions on fuzzy model interpretability are also suggested. Crown Copyright © 2008

    Relative-fuzzy: a novel approach for handling complex ambiguity for software engineering of data mining models

    Get PDF
    There are two main defined classes of uncertainty namely: fuzziness and ambiguity, where ambiguity is ‘one-to-many’ relationship between syntax and semantic of a proposition. This definition seems that it ignores ‘many-to-many’ relationship ambiguity type of uncertainty. In this thesis, we shall use complex-uncertainty to term many-to-many relationship ambiguity type of uncertainty. This research proposes a new approach for handling the complex ambiguity type of uncertainty that may exist in data, for software engineering of predictive Data Mining (DM) classification models. The proposed approach is based on Relative-Fuzzy Logic (RFL), a novel type of fuzzy logic. RFL defines a new formulation of the problem of ambiguity type of uncertainty in terms of States Of Proposition (SOP). RFL describes its membership (semantic) value by using the new definition of Domain of Proposition (DOP), which is based on the relativity principle as defined by possible-worlds logic. To achieve the goal of proposing RFL, a question is needed to be answered, which is: how these two approaches; i.e. fuzzy logic and possible-world, can be mixed to produce a new membership value set (and later logic) that able to handle fuzziness and multiple viewpoints at the same time? Achieving such goal comes via providing possible world logic the ability to quantifying multiple viewpoints and also model fuzziness in each of these multiple viewpoints and expressing that in a new set of membership value. Furthermore, a new architecture of Hierarchical Neural Network (HNN) called ML/RFL-Based Net has been developed in this research, along with a new learning algorithm and new recalling algorithm. The architecture, learning algorithm and recalling algorithm of ML/RFL-Based Net follow the principles of RFL. This new type of HNN is considered to be a RFL computation machine. The ability of the Relative Fuzzy-based DM prediction model to tackle the problem of complex ambiguity type of uncertainty has been tested. Special-purpose Integrated Development Environment (IDE) software, which generates a DM prediction model for speech recognition, has been developed in this research too, which is called RFL4ASR. This special purpose IDE is an extension of the definition of the traditional IDE. Using multiple sets of TIMIT speech data, the prediction model of type ML/RFL-Based Net has classification accuracy of 69.2308%. This accuracy is higher than the best achievements of WEKA data mining machines given the same speech data
    • 

    corecore