7,255 research outputs found

    The Query-commit Problem

    Full text link
    In the query-commit problem we are given a graph where edges have distinct probabilities of existing. It is possible to query the edges of the graph, and if the queried edge exists then its endpoints are irrevocably matched. The goal is to find a querying strategy which maximizes the expected size of the matching obtained. This stochastic matching setup is motivated by applications in kidney exchanges and online dating. In this paper we address the query-commit problem from both theoretical and experimental perspectives. First, we show that a simple class of edges can be queried without compromising the optimality of the strategy. This property is then used to obtain in polynomial time an optimal querying strategy when the input graph is sparse. Next we turn our attentions to the kidney exchange application, focusing on instances modeled over real data from existing exchange programs. We prove that, as the number of nodes grows, almost every instance admits a strategy which matches almost all nodes. This result supports the intuition that more exchanges are possible on a larger pool of patient/donors and gives theoretical justification for unifying the existing exchange programs. Finally, we evaluate experimentally different querying strategies over kidney exchange instances. We show that even very simple heuristics perform fairly well, being within 1.5% of an optimal clairvoyant strategy, that knows in advance the edges in the graph. In such a time-sensitive application, this result motivates the use of committing strategies

    Compressive Mining: Fast and Optimal Data Mining in the Compressed Domain

    Full text link
    Real-world data typically contain repeated and periodic patterns. This suggests that they can be effectively represented and compressed using only a few coefficients of an appropriate basis (e.g., Fourier, Wavelets, etc.). However, distance estimation when the data are represented using different sets of coefficients is still a largely unexplored area. This work studies the optimization problems related to obtaining the \emph{tightest} lower/upper bound on Euclidean distances when each data object is potentially compressed using a different set of orthonormal coefficients. Our technique leads to tighter distance estimates, which translates into more accurate search, learning and mining operations \textit{directly} in the compressed domain. We formulate the problem of estimating lower/upper distance bounds as an optimization problem. We establish the properties of optimal solutions, and leverage the theoretical analysis to develop a fast algorithm to obtain an \emph{exact} solution to the problem. The suggested solution provides the tightest estimation of the L2L_2-norm or the correlation. We show that typical data-analysis operations, such as k-NN search or k-Means clustering, can operate more accurately using the proposed compression and distance reconstruction technique. We compare it with many other prevalent compression and reconstruction techniques, including random projections and PCA-based techniques. We highlight a surprising result, namely that when the data are highly sparse in some basis, our technique may even outperform PCA-based compression. The contributions of this work are generic as our methodology is applicable to any sequential or high-dimensional data as well as to any orthogonal data transformation used for the underlying data compression scheme.Comment: 25 pages, 20 figures, accepted in VLD
    corecore