319 research outputs found

    Analysis and Test of the Effects of Single Event Upsets Affecting the Configuration Memory of SRAM-based FPGAs

    Get PDF
    SRAM-based FPGAs are increasingly relevant in a growing number of safety-critical application fields, ranging from automotive to aerospace. These application fields are characterized by a harsh radiation environment that can cause the occurrence of Single Event Upsets (SEUs) in digital devices. These faults have particularly adverse effects on SRAM-based FPGA systems because not only can they temporarily affect the behaviour of the system by changing the contents of flip-flops or memories, but they can also permanently change the functionality implemented by the system itself, by changing the content of the configuration memory. Designing safety-critical applications requires accurate methodologies to evaluate the system’s sensitivity to SEUs as early as possible during the design process. Moreover it is necessary to detect the occurrence of SEUs during the system life-time. To this purpose test patterns should be generated during the design process, and then applied to the inputs of the system during its operation. In this thesis we propose a set of software tools that could be used by designers of SRAM-based FPGA safety-critical applications to assess the sensitivity to SEUs of the system and to generate test patterns for in-service testing. The main feature of these tools is that they implement a model of SEUs affecting the configuration bits controlling the logic and routing resources of an FPGA device that has been demonstrated to be much more accurate than the classical stuck-at and open/short models, that are commonly used in the analysis of faults in digital devices. By keeping this accurate fault model into account, the proposed tools are more accurate than similar academic and commercial tools today available for the analysis of faults in digital circuits, that do not take into account the features of the FPGA technology.. In particular three tools have been designed and developed: (i) ASSESS: Accurate Simulator of SEuS affecting the configuration memory of SRAM-based FPGAs, a simulator of SEUs affecting the configuration memory of an SRAM-based FPGA system for the early assessment of the sensitivity to SEUs; (ii) UA2TPG: Untestability Analyzer and Automatic Test Pattern Generator for SEUs Affecting the Configuration Memory of SRAM-based FPGAs, a static analysis tool for the identification of the untestable SEUs and for the automatic generation of test patterns for in-service testing of the 100% of the testable SEUs; and (iii) GABES: Genetic Algorithm Based Environment for SEU Testing in SRAM-FPGAs, a Genetic Algorithm-based Environment for the generation of an optimized set of test patterns for in-service testing of SEUs. The proposed tools have been applied to some circuits from the ITC’99 benchmark. The results obtained from these experiments have been compared with results obtained by similar experiments in which we considered the stuck-at fault model, instead of the more accurate model for SEUs. From the comparison of these experiments we have been able to verify that the proposed software tools are actually more accurate than similar tools today available. In particular the comparison between results obtained using ASSESS with those obtained by fault injection has shown that the proposed fault simulator has an average error of 0:1% and a maximum error of 0:5%, while using a stuck-at fault simulator the average error with respect of the fault injection experiment has been 15:1% with a maximum error of 56:2%. Similarly the comparison between the results obtained using UA2TPG for the accurate SEU model, with the results obtained for stuck-at faults has shown an average difference of untestability of 7:9% with a maximum of 37:4%. Finally the comparison between fault coverages obtained by test patterns generated for the accurate model of SEUs and the fault coverages obtained by test pattern designed for stuck-at faults, shows that the former detect the 100% of the testable faults, while the latter reach an average fault coverage of 78:9%, with a minimum of 54% and a maximum of 93:16%

    The ABC130 barrel module prototyping programme for the ATLAS strip tracker

    Full text link
    For the Phase-II Upgrade of the ATLAS Detector, its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100 % silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-25) and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.Comment: 82 pages, 66 figure

    Cost modelling and concurrent engineering for testable design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.As integrated circuits and printed circuit boards increase in complexity, testing becomes a major cost factor of the design and production of the complex devices. Testability has to be considered during the design of complex electronic systems, and automatic test systems have to be used in order to facilitate the test. This fact is now widely accepted in industry. Both design for testability and the usage of automatic test systems aim at reducing the cost of production testing or, sometimes, making it possible at all. Many design for testability methods and test systems are available which can be configured into a production test strategy, in order to achieve high quality of the final product. The designer has to select from the various options for creating a test strategy, by maximising the quality and minimising the total cost for the electronic system. This thesis presents a methodology for test strategy generation which is based on consideration of the economics during the life cycle of the electronic system. This methodology is a concurrent engineering approach which takes into account all effects of a test strategy on the electronic system during its life cycle by evaluating its related cost. This objective methodology is used in an original test strategy planning advisory system, which allows for test strategy planning for VLSI circuits as well as for digital electronic systems. The cost models which are used for evaluating the economics of test strategies are described in detail and the test strategy planning system is presented. A methodology for making decisions which are based on estimated costing data is presented. Results of using the cost models and the test strategy planning system for evaluating the economics of test strategies for selected industrial designs are presented

    Product assurance technology for procuring reliable, radiation-hard, custom LSI/VLSI electronics

    Get PDF
    Advanced measurement methods using microelectronic test chips are described. These chips are intended to be used in acquiring the data needed to qualify Application Specific Integrated Circuits (ASIC's) for space use. Efforts were focused on developing the technology for obtaining custom IC's from CMOS/bulk silicon foundries. A series of test chips were developed: a parametric test strip, a fault chip, a set of reliability chips, and the CRRES (Combined Release and Radiation Effects Satellite) chip, a test circuit for monitoring space radiation effects. The technical accomplishments of the effort include: (1) development of a fault chip that contains a set of test structures used to evaluate the density of various process-induced defects; (2) development of new test structures and testing techniques for measuring gate-oxide capacitance, gate-overlap capacitance, and propagation delay; (3) development of a set of reliability chips that are used to evaluate failure mechanisms in CMOS/bulk: interconnect and contact electromigration and time-dependent dielectric breakdown; (4) development of MOSFET parameter extraction procedures for evaluating subthreshold characteristics; (5) evaluation of test chips and test strips on the second CRRES wafer run; (6) two dedicated fabrication runs for the CRRES chip flight parts; and (7) publication of two papers: one on the split-cross bridge resistor and another on asymmetrical SRAM (static random access memory) cells for single-event upset analysis

    Fault and Defect Tolerant Computer Architectures: Reliable Computing With Unreliable Devices

    Get PDF
    This research addresses design of a reliable computer from unreliable device technologies. A system architecture is developed for a fault and defect tolerant (FDT) computer. Trade-offs between different techniques are studied and yield and hardware cost models are developed. Fault and defect tolerant designs are created for the processor and the cache memory. Simulation results for the content-addressable memory (CAM)-based cache show 90% yield with device failure probabilities of 3 x 10(-6), three orders of magnitude better than non fault tolerant caches of the same size. The entire processor achieves 70% yield with device failure probabilities exceeding 10(-6). The required hardware redundancy is approximately 15 times that of a non-fault tolerant design. While larger than current FT designs, this architecture allows the use of devices much more likely to fail than silicon CMOS. As part of model development, an improved model is derived for NAND Multiplexing. The model is the first accurate model for small and medium amounts of redundancy. Previous models are extended to account for dependence between the inputs and produce more accurate results

    Fault simulation for structural testing of analogue integrated circuits

    Get PDF
    In this thesis the ANTICS analogue fault simulation software is described which provides a statistical approach to fault simulation for accurate analogue IC test evaluation. The traditional figure of fault coverage is replaced by the average probability of fault detection. This is later refined by considering the probability of fault occurrence to generate a more realistic, weighted test metric. Two techniques to reduce the fault simulation time are described, both of which show large reductions in simulation time with little loss of accuracy. The final section of the thesis presents an accurate comparison of three test techniques and an evaluation of dynamic supply current monitoring. An increase in fault detection for dynamic supply current monitoring is obtained by removing the DC component of the supply current prior to measurement

    Characterisation and mitigation of long-term degradation effects in programmable logic

    No full text
    Reliability has always been an issue in silicon device engineering, but until now it has been managed by the carefully tuned fabrication process. In the future the underlying physical limitations of silicon-based electronics, plus the practical challenges of manufacturing with such complexity at such a small scale, will lead to a crunch point where transistor-level reliability must be forfeited to continue achieving better productivity. Field-programmable gate arrays (FPGAs) are built on state-of-the-art silicon processes, but it has been recognised for some time that their distinctive characteristics put them in a favourable position over application-specific integrated circuits in the face of the reliability challenge. The literature shows how a regular structure, interchangeable resources and an ability to reconfigure can all be exploited to detect, locate, and overcome degradation and keep an FPGA application running. To fully exploit these characteristics, a better understanding is needed of the behavioural changes that are seen in the resources that make up an FPGA under ageing. Modelling is an attractive approach to this and in this thesis the causes and effects are explored of three important degradation mechanisms. All are shown to have an adverse affect on FPGA operation, but their characteristics show novel opportunities for ageing mitigation. Any modelling exercise is built on assumptions and so an empirical method is developed for investigating ageing on hardware with an accelerated-life test. Here, experiments show that timing degradation due to negative-bias temperature instability is the dominant process in the technology considered. Building on simulated and experimental results, this work also demonstrates a variety of methods for increasing the lifetime of FPGA lookup tables. The pre-emptive measure of wear-levelling is investigated in particular detail, and it is shown by experiment how di fferent reconfiguration algorithms can result in a significant reduction to the rate of degradation

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design
    corecore