773 research outputs found

    Proscriptive Bayesian Programming Application for Collision Avoidance

    Get PDF
    Evolve safely in an unchanged environment and possibly following an optimal trajectory is one big challenge presented by situated robotics research field. Collision avoidance is a basic security requirement and this paper proposes a solution based on a probabilistic approach called Bayesian Programming. This approach aims to deal with the uncertainty, imprecision and incompleteness of the information handled. Some examples illustrate the process of embodying the programmer preliminary knowledge into a Bayesian program and experimental results of these examples implementation in an electrical vehicle are described and commented. Some videos illustrating these experiments can be found at http://www-laplace.imag.fr

    Optimal Path Planning in Distinct Topo-Geometric Classes using Neighborhood-augmented Graph and its Application to Path Planning for a Tethered Robot in 3D

    Full text link
    Many robotics applications benefit from being able to compute multiple locally optimal paths in a given configuration space. Examples include path planning for of tethered robots with cable-length constraints, systems involving cables, multi-robot topological exploration & coverage, and, congestion reduction for mobile robots navigation without inter-robot coordination. Existing paradigm is to use topological path planning methods that can provide optimal paths from distinct topological classes available in the underlying configuration space. However, these methods usually require non-trivial and non-universal geometrical constructions, which are prohibitively complex or expensive in 3 or higher dimensional configuration spaces with complex topology. Furthermore, topological methods are unable to distinguish between locally optimal paths that belong to the same topological class but are distinct because of genus-zero obstacles in 3D or due to high-cost or high-curvature regions. In this paper we propose an universal and generalized approach to multi-class path planning using the concept of a novel neighborhood-augmented graph, search-based planning in which can compute paths in distinct topo-geometric classes. This approach can find desired number of locally optimal paths in a wider variety of configuration spaces without requiring any complex pre-processing or geometric constructions. Unlike the existing topological methods, resulting optimal paths are not restricted to distinct topological classes, thus making the algorithm applicable to many other problems where locally optimal and geometrically distinct paths are of interest. For the demonstration of an application of the proposed approach, we implement our algorithm to planning for shortest traversible paths for a tethered robot with cable-length constraint navigating in 3D and validate it in simulations & experiments.Comment: 18 pages, 17 figure

    Reports on computer graphics testbed to simulate and test vision systems for space applications

    Get PDF
    Three reports are presented on computer graphics testbed to simulate and test vision systems for space applications
    corecore