4,379 research outputs found

    Long range LiDAR characterisation for obstacle detection for use by the visually impaired and blind

    Get PDF
    Obstacle detection and avoidance is a huge area of interest for autonomous vehicles and, as such, has become an important research topic. Detecting and identifying obstacles enables navigation through an ever changing environment. This work looks at the technology used in self-driving vehicles and examines whether the same technology could be used to aid in navigation for visually impaired and blind (VIB) people. For autonomous vehicles, obstacle detection relies on different sensor modalities to provide information on the vehicles surroundings. A combination of the same sensors placed on a white cane could be used to perform free-space assessment over the whole height of the user and provide additional environmental information not available from the cane alone. This provides its own challenges and advantages. The speeds are much slower when dealing with pedestrians and scanning can be achieved by the movement of the cane. However, the weight and size must be significantly reduced. The full system will be integrated into a smart cane and will consist of four main sensors as well as range sensors. The aim of this work is to report on the characterisation of a long range LiDAR (up to 10m) that will be integrated into a smart white cane developed as part of the INSPEX H2020 project

    Wearable obstacle avoidance electronic travel aids for blind and visually impaired individuals : a systematic review

    Get PDF
    Background Wearable obstacle avoidance electronic travel aids (ETAs) have been developed to assist the safe displacement of blind and visually impaired individuals (BVIs) in indoor/outdoor spaces. This systematic review aimed to understand the strengths and weaknesses of existing ETAs in terms of hardware functionality, cost, and user experience. These elements may influence the usability of the ETAs and are valuable in guiding the development of superior ETAs in the future. Methods Formally published studies designing and developing the wearable obstacle avoidance ETAs were searched for from six databases from their inception to April 2023. The PRISMA 2020 and APISSER guidelines were followed. Results Eighty-nine studies were included for analysis, 41 of which were judged to be of moderate to high quality. Most wearable obstacle avoidance ETAs mainly depend on camera- and ultrasonic-based techniques to achieve perception of the environment. Acoustic feedback was the most common human-computer feedback form used by the ETAs. According to user experience, the efficacy and safety of the device was usually their primary concern. Conclusions Although many conceptualised ETAs have been designed to facilitate BVIs' independent navigation, most of these devices suffer from shortcomings. This is due to the nature and limitations of the various processors, environment detection techniques and human-computer feedback those ETAs are equipped with. Integrating multiple techniques and hardware into one ETA is a way to improve performance, but there is still a need to address the discomfort of wearing the device and the high-cost. Developing an applicable systematic review guideline along with a credible quality assessment tool for these types of studies is also required. © 2013 IEEE

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    A Systematic Review of Urban Navigation Systems for Visually Impaired People

    Get PDF
    Blind and Visually impaired people (BVIP) face a range of practical difficulties when undertaking outdoor journeys as pedestrians. Over the past decade, a variety of assistive devices have been researched and developed to help BVIP navigate more safely and independently. In~addition, research in overlapping domains are addressing the problem of automatic environment interpretation using computer vision and machine learning, particularly deep learning, approaches. Our aim in this article is to present a comprehensive review of research directly in, or relevant to, assistive outdoor navigation for BVIP. We breakdown the navigation area into a series of navigation phases and tasks. We then use this structure for our systematic review of research, analysing articles, methods, datasets and current limitations by task. We also provide an overview of commercial and non-commercial navigation applications targeted at BVIP. Our review contributes to the body of knowledge by providing a comprehensive, structured analysis of work in the domain, including the state of the art, and guidance on future directions. It will support both researchers and other stakeholders in the domain to establish an informed view of research progress
    corecore