768 research outputs found

    A Systematic Review of Urban Navigation Systems for Visually Impaired People

    Get PDF
    Blind and Visually impaired people (BVIP) face a range of practical difficulties when undertaking outdoor journeys as pedestrians. Over the past decade, a variety of assistive devices have been researched and developed to help BVIP navigate more safely and independently. In~addition, research in overlapping domains are addressing the problem of automatic environment interpretation using computer vision and machine learning, particularly deep learning, approaches. Our aim in this article is to present a comprehensive review of research directly in, or relevant to, assistive outdoor navigation for BVIP. We breakdown the navigation area into a series of navigation phases and tasks. We then use this structure for our systematic review of research, analysing articles, methods, datasets and current limitations by task. We also provide an overview of commercial and non-commercial navigation applications targeted at BVIP. Our review contributes to the body of knowledge by providing a comprehensive, structured analysis of work in the domain, including the state of the art, and guidance on future directions. It will support both researchers and other stakeholders in the domain to establish an informed view of research progress

    Real-time vehicle detection using low-cost sensors

    Get PDF
    Improving road safety and reducing the number of accidents is one of the top priorities for the automotive industry. As human driving behaviour is one of the top causation factors of road accidents, research is working towards removing control from the human driver by automating functions and finally introducing a fully Autonomous Vehicle (AV). A Collision Avoidance System (CAS) is one of the key safety systems for an AV, as it ensures all potential threats ahead of the vehicle are identified and appropriate action is taken. This research focuses on the task of vehicle detection, which is the base of a CAS, and attempts to produce an effective vehicle detector based on the data coming from a low-cost monocular camera. Developing a robust CAS based on low-cost sensor is crucial to bringing the cost of safety systems down and in this way, increase their adoption rate by end users. In this work, detectors are developed based on the two main approaches to vehicle detection using a monocular camera. The first is the traditional image processing approach where visual cues are utilised to generate potential vehicle locations and at a second stage, verify the existence of vehicles in an image. The second approach is based on a Convolutional Neural Network, a computationally expensive method that unifies the detection process in a single pipeline. The goal is to determine which method is more appropriate for real-time applications. Following the first approach, a vehicle detector based on the combination of HOG features and SVM classification is developed. The detector attempts to optimise performance by modifying the detection pipeline and improve run-time performance. For the CNN-based approach, six different network models are developed and trained end to end using collected data, each with a different network structure and parameters, in an attempt to determine which combination produces the best results. The evaluation of the different vehicle detectors produced some interesting findings; the first approach did not manage to produce a working detector, while the CNN-based approach produced a high performing vehicle detector with an 85.87% average precision and a very low miss rate. The detector managed to perform well under different operational environments (motorway, urban and rural roads) and the results were validated using an external dataset. Additional testing of the vehicle detector indicated it is suitable as a base for safety applications such as CAS, with a run time performance of 12FPS and potential for further improvements.</div

    Multi-Sensor Fusion for 3D Object Detection

    Get PDF
    Sensing and modelling of the surrounding environment is crucial for solving many of the problems in intelligent machines like self-driving cars, autonomous robots, and augmented reality displays. Performance, reliability and safety of the autonomous agents rely heavily on the way the environment is modelled. Two-dimensional models are inadequate to capture the three-dimensional nature of real-world scenes. Three-dimensional models are necessary to achieve the standards required by the autonomy stack for intelligent agents to work alongside humans. Data driven deep learning methodologies for three-dimensional scene modelling has evolved greatly in the past few years because of the availability of huge amounts of data from variety of sensors in the form of well-designed datasets. 3D object detection and localization are two of the key requirements for tasks such as obstacle avoidance, agent-to-agent interaction, and path planning. Most methodologies for object detection work on a single sensor data like camera or LiDAR. Camera sensors provide feature rich scene data and LiDAR provides us 3D geometrical information. Advanced object detection and localization can be achieved by leveraging the information from both camera and LiDAR sensors. In order to effectively quantify the uncertainty of each sensor channel, an appropriate fusion strategy is needed to fuse the independently encoded point clouds from LiDAR with the RGB images from standard vision cameras. In this work, we introduce a fusion strategy and develop a multimodal pipeline which utilizes existing state-of-the-art deep learning based data encoders to produce robust 3D object detection and localization in real-time. The performance of the proposed fusion model is evaluated on the popular KITTI 3D benchmark dataset

    Solar-Powered Deep Learning-Based Recognition System of Daily Used Objects and Human Faces for Assistance of the Visually Impaired

    Get PDF
    This paper introduces a novel low-cost solar-powered wearable assistive technology (AT) device, whose aim is to provide continuous, real-time object recognition to ease the finding of the objects for visually impaired (VI) people in daily life. The system consists of three major components: a miniature low-cost camera, a system on module (SoM) computing unit, and an ultrasonic sensor. The first is worn on the user’s eyeglasses and acquires real-time video of the nearby space. The second is worn as a belt and runs deep learning-based methods and spatial algorithms which process the video coming from the camera performing objects’ detection and recognition. The third assists on positioning the objects found in the surrounding space. The developed device provides audible descriptive sentences as feedback to the user involving the objects recognized and their position referenced to the user gaze. After a proper power consumption analysis, a wearable solar harvesting system, integrated with the developed AT device, has been designed and tested to extend the energy autonomy in the dierent operating modes and scenarios. Experimental results obtained with the developed low-cost AT device have demonstrated an accurate and reliable real-time object identification with an 86% correct recognition rate and 215 ms average time interval (in case of high-speed SoM operating mode) for the image processing. The proposed system is capable of recognizing the 91 objects oered by the Microsoft Common Objects in Context (COCO) dataset plus several custom objects and human faces. In addition, a simple and scalable methodology for using image datasets and training of Convolutional Neural Networks (CNNs) is introduced to add objects to the system and increase its repertory. It is also demonstrated that comprehensive trainings involving 100 images per targeted object achieve 89% recognition rates, while fast trainings with only 12 images achieve acceptable recognition rates of 55%

    Combined Learned and Classical Methods for Real-Time Visual Perception in Autonomous Driving

    Full text link
    Autonomy, robotics, and Artificial Intelligence (AI) are among the main defining themes of next-generation societies. Of the most important applications of said technologies is driving automation which spans from different Advanced Driver Assistance Systems (ADAS) to full self-driving vehicles. Driving automation is promising to reduce accidents, increase safety, and increase access to mobility for more people such as the elderly and the handicapped. However, one of the main challenges facing autonomous vehicles is robust perception which can enable safe interaction and decision making. With so many sensors to perceive the environment, each with its own capabilities and limitations, vision is by far one of the main sensing modalities. Cameras are cheap and can provide rich information of the observed scene. Therefore, this dissertation develops a set of visual perception algorithms with a focus on autonomous driving as the target application area. This dissertation starts by addressing the problem of real-time motion estimation of an agent using only the visual input from a camera attached to it, a problem known as visual odometry. The visual odometry algorithm can achieve low drift rates over long-traveled distances. This is made possible through the innovative local mapping approach used. This visual odometry algorithm was then combined with my multi-object detection and tracking system. The tracking system operates in a tracking-by-detection paradigm where an object detector based on convolution neural networks (CNNs) is used. Therefore, the combined system can detect and track other traffic participants both in image domain and in 3D world frame while simultaneously estimating vehicle motion. This is a necessary requirement for obstacle avoidance and safe navigation. Finally, the operational range of traditional monocular cameras was expanded with the capability to infer depth and thus replace stereo and RGB-D cameras. This is accomplished through a single-stream convolution neural network which can output both depth prediction and semantic segmentation. Semantic segmentation is the process of classifying each pixel in an image and is an important step toward scene understanding. Literature survey, algorithms descriptions, and comprehensive evaluations on real-world datasets are presented.Ph.D.College of Engineering & Computer ScienceUniversity of Michiganhttps://deepblue.lib.umich.edu/bitstream/2027.42/153989/1/Mohamed Aladem Final Dissertation.pdfDescription of Mohamed Aladem Final Dissertation.pdf : Dissertatio

    Multimodal machine learning for intelligent mobility

    Get PDF
    Scientific problems are solved by finding the optimal solution for a specific task. Some problems can be solved analytically while other problems are solved using data driven methods. The use of digital technologies to improve the transportation of people and goods, which is referred to as intelligent mobility, is one of the principal beneficiaries of data driven solutions. Autonomous vehicles are at the heart of the developments that propel Intelligent Mobility. Due to the high dimensionality and complexities involved in real-world environments, it needs to become commonplace for intelligent mobility to use data-driven solutions. As it is near impossible to program decision making logic for every eventuality manually. While recent developments of data-driven solutions such as deep learning facilitate machines to learn effectively from large datasets, the application of techniques within safety-critical systems such as driverless cars remain scarce.Autonomous vehicles need to be able to make context-driven decisions autonomously in different environments in which they operate. The recent literature on driverless vehicle research is heavily focused only on road or highway environments but have discounted pedestrianized areas and indoor environments. These unstructured environments tend to have more clutter and change rapidly over time. Therefore, for intelligent mobility to make a significant impact on human life, it is vital to extend the application beyond the structured environments. To further advance intelligent mobility, researchers need to take cues from multiple sensor streams, and multiple machine learning algorithms so that decisions can be robust and reliable. Only then will machines indeed be able to operate in unstructured and dynamic environments safely. Towards addressing these limitations, this thesis investigates data driven solutions towards crucial building blocks in intelligent mobility. Specifically, the thesis investigates multimodal sensor data fusion, machine learning, multimodal deep representation learning and its application of intelligent mobility. This work demonstrates that mobile robots can use multimodal machine learning to derive driver policy and therefore make autonomous decisions.To facilitate autonomous decisions necessary to derive safe driving algorithms, we present an algorithm for free space detection and human activity recognition. Driving these decision-making algorithms are specific datasets collected throughout this study. They include the Loughborough London Autonomous Vehicle dataset, and the Loughborough London Human Activity Recognition dataset. The datasets were collected using an autonomous platform design and developed in house as part of this research activity. The proposed framework for Free-Space Detection is based on an active learning paradigm that leverages the relative uncertainty of multimodal sensor data streams (ultrasound and camera). It utilizes an online learning methodology to continuously update the learnt model whenever the vehicle experiences new environments. The proposed Free Space Detection algorithm enables an autonomous vehicle to self-learn, evolve and adapt to new environments never encountered before. The results illustrate that online learning mechanism is superior to one-off training of deep neural networks that require large datasets to generalize to unfamiliar surroundings. The thesis takes the view that human should be at the centre of any technological development related to artificial intelligence. It is imperative within the spectrum of intelligent mobility where an autonomous vehicle should be aware of what humans are doing in its vicinity. Towards improving the robustness of human activity recognition, this thesis proposes a novel algorithm that classifies point-cloud data originated from Light Detection and Ranging sensors. The proposed algorithm leverages multimodality by using the camera data to identify humans and segment the region of interest in point cloud data. The corresponding 3-dimensional data was converted to a Fisher Vector Representation before being classified by a deep Convolutional Neural Network. The proposed algorithm classifies the indoor activities performed by a human subject with an average precision of 90.3%. When compared to an alternative point cloud classifier, PointNet[1], [2], the proposed framework out preformed on all classes. The developed autonomous testbed for data collection and algorithm validation, as well as the multimodal data-driven solutions for driverless cars, is the major contributions of this thesis. It is anticipated that these results and the testbed will have significant implications on the future of intelligent mobility by amplifying the developments of intelligent driverless vehicles.</div

    Machine Learning-Aided Operations and Communications of Unmanned Aerial Vehicles: A Contemporary Survey

    Full text link
    The ongoing amalgamation of UAV and ML techniques is creating a significant synergy and empowering UAVs with unprecedented intelligence and autonomy. This survey aims to provide a timely and comprehensive overview of ML techniques used in UAV operations and communications and identify the potential growth areas and research gaps. We emphasise the four key components of UAV operations and communications to which ML can significantly contribute, namely, perception and feature extraction, feature interpretation and regeneration, trajectory and mission planning, and aerodynamic control and operation. We classify the latest popular ML tools based on their applications to the four components and conduct gap analyses. This survey also takes a step forward by pointing out significant challenges in the upcoming realm of ML-aided automated UAV operations and communications. It is revealed that different ML techniques dominate the applications to the four key modules of UAV operations and communications. While there is an increasing trend of cross-module designs, little effort has been devoted to an end-to-end ML framework, from perception and feature extraction to aerodynamic control and operation. It is also unveiled that the reliability and trust of ML in UAV operations and applications require significant attention before full automation of UAVs and potential cooperation between UAVs and humans come to fruition.Comment: 36 pages, 304 references, 19 Figure
    • …
    corecore