324 research outputs found

    Detecting shadows and low-lying objects in indoor and outdoor scenes using homographies

    Get PDF
    Many computer vision applications apply background suppression techniques for the detection and segmentation of moving objects in a scene. While these algorithms tend to work well in controlled conditions they often fail when applied to unconstrained real-world environments. This paper describes a system that detects and removes erroneously segmented foreground regions that are close to a ground plane. These regions include shadows, changing background objects and other low-lying objects such as leaves and rubbish. The system uses a set-up of two or more cameras and requires no 3D reconstruction or depth analysis of the regions. Therefore, a strong camera calibration of the set-up is not necessary. A geometric constraint called a homography is exploited to determine if foreground points are on or above the ground plane. The system takes advantage of the fact that regions in images off the homography plane will not correspond after a homography transformation. Experimental results using real world scenes from a pedestrian tracking application illustrate the effectiveness of the proposed approach

    Robust Multiple Lane Road Modeling Based on Perspective Analysis

    Get PDF
    Road modeling is the first step towards environment perception within driver assistance video-based systems. Typically, lane modeling allows applications such as lane departure warning or lane invasion by other vehicles. In this paper, a new monocular image processing strategy that achieves a robust multiple lane model is proposed. The identification of multiple lanes is done by firstly detecting the own lane and estimating its geometry under perspective distortion. The perspective analysis and curve fitting allows to hypothesize adjacent lanes assuming some a priori knowledge about the road. The verification of these hypotheses is carried out by a confidence level analysis. Several types of sequences have been tested, with different illumination conditions, presence of shadows and significant curvature, all performing in realtime. Results show the robustness of the system, delivering accurate multiple lane road models in most situations

    Road environment modeling using robust perspective analysis and recursive Bayesian segmentation

    Get PDF
    Recently, vision-based advanced driver-assistance systems (ADAS) have received a new increased interest to enhance driving safety. In particular, due to its high performance–cost ratio, mono-camera systems are arising as the main focus of this field of work. In this paper we present a novel on-board road modeling and vehicle detection system, which is a part of the result of the European I-WAY project. The system relies on a robust estimation of the perspective of the scene, which adapts to the dynamics of the vehicle and generates a stabilized rectified image of the road plane. This rectified plane is used by a recursive Bayesian classi- fier, which classifies pixels as belonging to different classes corresponding to the elements of interest of the scenario. This stage works as an intermediate layer that isolates subsequent modules since it absorbs the inherent variability of the scene. The system has been tested on-road, in different scenarios, including varied illumination and adverse weather conditions, and the results have been proved to be remarkable even for such complex scenarios

    Moving object detection and segmentation in urban environments from a moving platform

    Get PDF
    This paper proposes an effective approach to detect and segment moving objects from two time-consecutive stereo frames, which leverages the uncertainties in camera motion estimation and in disparity computation. First, the relative camera motion and its uncertainty are computed by tracking and matching sparse features in four images. Then, the motion likelihood at each pixel is estimated by taking into account the ego-motion uncertainty and disparity in computation procedure. Finally, the motion likelihood, color and depth cues are combined in the graph-cut framework for moving object segmentation. The efficiency of the proposed method is evaluated on the KITTI benchmarking datasets, and our experiments show that the proposed approach is robust against both global (camera motion) and local (optical flow) noise. Moreover, the approach is dense as it applies to all pixels in an image, and even partially occluded moving objects can be detected successfully. Without dedicated tracking strategy, our approach achieves high recall and comparable precision on the KITTI benchmarking sequences.This work was carried out within the framework of the Equipex ROBOTEX (ANR-10- EQPX-44-01). Dingfu Zhou was sponsored by the China Scholarship Council for 3.5 year’s PhD study at HEUDIASYC laboratory in University of Technology of Compiegne

    Fall Prevention Shoes Using Camera-Based Line-Laser Obstacle Detection System

    Get PDF

    A learning approach to swarm-based path detection and tracking

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de ComputadoresThis dissertation presents a set of top-down modulation mechanisms for the modulation of the swarm-based visual saliency computation process proposed by Santana et al. (2010) in context of path detection and tracking. In the original visual saliency computation process, two swarms of agents sensitive to bottom-up conspicuity information interact via pheromone-like signals so as to converge on the most likely location of the path being sought. The behaviours ruling the agents’motion are composed of a set of perception-action rules that embed top-down knowledge about the path’s overall layout. This reduces ambiguity in the face of distractors. However, distractors with a shape similar to the one of the path being sought can still misguide the system. To mitigate this issue, this dissertation proposes the use of a contrast model to modulate the conspicuity computation and the use of an appearance model to modulate the pheromone deployment. Given the heterogeneity of the paths, these models are learnt online. Using in a modulation context and not in a direct image processing, the complexity of these models can be reduced without hampering robustness. The result is a system computationally parsimonious with a work frequency of 20 Hz. Experimental results obtained from a data set encompassing 39 diverse videos show the ability of the proposed model to localise the path in 98.67 % of the 29789 evaluated frames

    Segmentation of Floors in Corridor Images for Mobile Robot Navigation

    Get PDF
    This thesis presents a novel method of floor segmentation from a single image for mobile robot navigation. In contrast with previous approaches that rely upon homographies, our approach does not require multiple images (either stereo or optical flow). It also does not require the camera to be calibrated, even for lens distortion. The technique combines three visual cues for evaluating the likelihood of horizontal intensity edge line segments belonging to the wall-floor boundary. The combination of these cues yields a robust system that works even in the presence of severe specular reflections, which are common in indoor environments. The nearly real-time algorithm is tested on a large database of images collected in a wide variety of conditions, on which it achieves nearly 90% segmentation accuracy. Additionally, we apply the floor segmentation method to low-resolution images and propose a minimalistic corridor representation consisting of the orientation line (center) and the wall-floor boundaries (lateral limit). Our study investigates the impact of image resolution upon the accuracy of extracting such a geometry, showing that detection of wall-floor boundaries can be estimated even in texture-poor environments with images as small as 16x12. One of the advantages of working at such resolutions is that the algorithm operates at hundreds of frames per second, or equivalently requires only a small percentage of the CPU

    Exploring Motion Signatures for Vision-Based Tracking, Recognition and Navigation

    Get PDF
    As cameras become more and more popular in intelligent systems, algorithms and systems for understanding video data become more and more important. There is a broad range of applications, including object detection, tracking, scene understanding, and robot navigation. Besides the stationary information, video data contains rich motion information of the environment. Biological visual systems, like human and animal eyes, are very sensitive to the motion information. This inspires active research on vision-based motion analysis in recent years. The main focus of motion analysis has been on low level motion representations of pixels and image regions. However, the motion signatures can benefit a broader range of applications if further in-depth analysis techniques are developed. In this dissertation, we mainly discuss how to exploit motion signatures to solve problems in two applications: object recognition and robot navigation. First, we use bird species recognition as the application to explore motion signatures for object recognition. We begin with study of the periodic wingbeat motion of flying birds. To analyze the wing motion of a flying bird, we establish kinematics models for bird wings, and obtain wingbeat periodicity in image frames after the perspective projection. Time series of salient extremities on bird images are extracted, and the wingbeat frequency is acquired for species classification. Physical experiments show that the frequency based recognition method is robust to segmentation errors and measurement lost up to 30%. In addition to the wing motion, the body motion of the bird is also analyzed to extract the flying velocity in 3D space. An interacting multi-model approach is then designed to capture the combined object motion patterns and different environment conditions. The proposed systems and algorithms are tested in physical experiments, and the results show a false positive rate of around 20% with a low false negative rate close to zero. Second, we explore motion signatures for vision-based vehicle navigation. We discover that motion vectors (MVs) encoded in Moving Picture Experts Group (MPEG) videos provide rich information of the motion in the environment, which can be used to reconstruct the vehicle ego-motion and the structure of the scene. However, MVs suffer from high noise level. To handle the challenge, an error propagation model for MVs is first proposed. Several steps, including MV merging, plane-at-infinity elimination, and planar region extraction, are designed to further reduce noises. The extracted planes are used as landmarks in an extended Kalman filter (EKF) for simultaneous localization and mapping. Results show that the algorithm performs localization and plane mapping with a relative trajectory error below 5:1%. Exploiting the fact that MVs encodes both environment information and moving obstacles, we further propose to track moving objects at the same time of localization and mapping. This enables the two critical navigation functionalities, localization and obstacle avoidance, to be performed in a single framework. MVs are labeled as stationary or moving according to their consistency to geometric constraints. Therefore, the extracted planes are separated into moving objects and the stationary scene. Multiple EKFs are used to track the static scene and the moving objects simultaneously. In physical experiments, we show a detection rate of moving objects at 96:6% and a mean absolute localization error below 3:5 meters
    corecore