222 research outputs found

    A Fibonacci control system with application to hyper-redundant manipulators

    Get PDF
    We study a robot snake model based on a discrete linear control system involving Fibonacci sequence and closely related to the theory of expansions in non-integer bases. The present paper includes an investigation of the reachable workspace, a more general analysis of the control system underlying the model, its reachability and local controllability properties and the relation with expansions in non-integer bases and with iterated function systems

    AI based Robot Safe Learning and Control

    Get PDF
    Introduction This open access book mainly focuses on the safe control of robot manipulators. The control schemes are mainly developed based on dynamic neural network, which is an important theoretical branch of deep reinforcement learning. In order to enhance the safety performance of robot systems, the control strategies include adaptive tracking control for robots with model uncertainties, compliance control in uncertain environments, obstacle avoidance in dynamic workspace. The idea for this book on solving safe control of robot arms was conceived during the industrial applications and the research discussion in the laboratory. Most of the materials in this book are derived from the authors’ papers published in journals, such as IEEE Transactions on Industrial Electronics, neurocomputing, etc. This book can be used as a reference book for researcher and designer of the robotic systems and AI based controllers, and can also be used as a reference book for senior undergraduate and graduate students in colleges and universities

    Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor

    Get PDF
    Sensor based robot motion planning research has primarily focused on mobile robots. Consider, however, the case of a robot manipulator expected to operate autonomously in a dynamic environment where unexpected collisions can occur with many parts of the robot. Only a sensor based system capable of generating collision free paths would be acceptable in such situations. Recently, work in this area has been reported in which a deterministic solution for 2DOF systems has been generated. The arm was sensitized with 'skin' of infra-red sensors. We have proposed a heuristic (potential field based) methodology for redundant robots with large DOF's. The key concepts are solving the path planning problem by cooperating global and local planning modules, the use of complete information from the sensors and partial (but appropriate) information from a world model, representation of objects with hyper-ellipsoids in the world model, and the use of variational planning. We intend to sensitize the robot arm with a 'skin' of capacitive proximity sensors. These sensors were developed at NASA, and are exceptionally suited for the space application. In the first part of the report, we discuss the development and modeling of the capacitive proximity sensor. In the second part we discuss the motion planning algorithm

    Continuous-time recurrent neural networks for quadratic programming: theory and engineering applications.

    Get PDF
    Liu Shubao.Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.Includes bibliographical references (leaves 90-98).Abstracts in English and Chinese.Abstract --- p.i摘要 --- p.iiiAcknowledgement --- p.ivChapter 1 --- Introduction --- p.1Chapter 1.1 --- Time-Varying Quadratic Optimization --- p.1Chapter 1.2 --- Recurrent Neural Networks --- p.3Chapter 1.2.1 --- From Feedforward to Recurrent Networks --- p.3Chapter 1.2.2 --- Computational Power and Complexity --- p.6Chapter 1.2.3 --- Implementation Issues --- p.7Chapter 1.3 --- Thesis Organization --- p.9Chapter I --- Theory and Models --- p.11Chapter 2 --- Linearly Constrained QP --- p.13Chapter 2.1 --- Model Description --- p.14Chapter 2.2 --- Convergence Analysis --- p.17Chapter 3 --- Quadratically Constrained QP --- p.26Chapter 3.1 --- Problem Formulation --- p.26Chapter 3.2 --- Model Description --- p.27Chapter 3.2.1 --- Model 1 (Dual Model) --- p.28Chapter 3.2.2 --- Model 2 (Improved Dual Model) --- p.28Chapter II --- Engineering Applications --- p.29Chapter 4 --- KWTA Network Circuit Design --- p.31Chapter 4.1 --- Introduction --- p.31Chapter 4.2 --- Equivalent Reformulation --- p.32Chapter 4.3 --- KWTA Network Model --- p.36Chapter 4.4 --- Simulation Results --- p.40Chapter 4.5 --- Conclusions --- p.40Chapter 5 --- Dynamic Control of Manipulators --- p.43Chapter 5.1 --- Introduction --- p.43Chapter 5.2 --- Problem Formulation --- p.44Chapter 5.3 --- Simplified Dual Neural Network --- p.47Chapter 5.4 --- Simulation Results --- p.51Chapter 5.5 --- Concluding Remarks --- p.55Chapter 6 --- Robot Arm Obstacle Avoidance --- p.56Chapter 6.1 --- Introduction --- p.56Chapter 6.2 --- Obstacle Avoidance Scheme --- p.58Chapter 6.2.1 --- Equality Constrained Formulation --- p.58Chapter 6.2.2 --- Inequality Constrained Formulation --- p.60Chapter 6.3 --- Simplified Dual Neural Network Model --- p.64Chapter 6.3.1 --- Existing Approaches --- p.64Chapter 6.3.2 --- Model Derivation --- p.65Chapter 6.3.3 --- Convergence Analysis --- p.67Chapter 6.3.4 --- Model Comparision --- p.69Chapter 6.4 --- Simulation Results --- p.70Chapter 6.5 --- Concluding Remarks --- p.71Chapter 7 --- Multiuser Detection --- p.77Chapter 7.1 --- Introduction --- p.77Chapter 7.2 --- Problem Formulation --- p.78Chapter 7.3 --- Neural Network Architecture --- p.82Chapter 7.4 --- Simulation Results --- p.84Chapter 8 --- Conclusions and Future Works --- p.88Chapter 8.1 --- Concluding Remarks --- p.88Chapter 8.2 --- Future Prospects --- p.88Bibliography --- p.8

    Deep Recurrent Neural Networks Based Obstacle Avoidance Control for Redundant Manipulators

    Get PDF
    Obstacle avoidance is an important subject in the control of robot manipulators, but is remains challenging for robots with redundant degrees of freedom, especially when there exist complex physical constraints. In this paper, we propose a novel controller based on deep recurrent neural networks. By abstracting robots and obstacles into critical point sets respectively, the distance between the robot and obstacles can be described in a simpler way, then the obstacle avoidance strategy is established in form of inequality constraints by general class-K functions. Using minimal-velocity-norm (MVN) scheme, the control problem is formulated as a quadratic-programming case under multiple constraints. Then a deep recurrent neural network considering system models is established to solve the QP problem online. Theoretical conduction and numerical simulations show that the controller is capable of avoiding static or dynamic obstacles, while tracking the predefined trajectories under physical constraints

    Infeasibility-free inverse kinematics method

    Get PDF
    International audienceThe problem of inverse kinematics is revisited in the present paper. The paper is focusing on the problem of solving the inverse kinematics problem while respecting velocity limits on both the robot's joints and the end-effector. Even-though the conventional inverse kinematics algorithms have been proven to be efficient in many applications, defining an admissible trajectory for the end-effector is still a burdensome task for the user, and the problem can easily become unsolvable. The main idea behind the proposed algorithms is to consider the sampling time as a free variable, hence adding more flexibility to the optimization problem associated with the inverse kinematics. We prove that the reformulated problem has always a solution if the end-effector path is in the reachable space of the robot, thus solving the problem of infeasibility of conventional inverse kinematics methods. To validate the proposed approach, we have conducted three simulations scenarios. The simulation results point that while the conventional inverse kinematics methods fail to track precisely a desired end-effector trajectory, the proposed algorithms always succeed

    Simultaneous Obstacle Avoidance and Target Tracking of Multiple Wheeled Mobile Robots With Certified Safety

    Get PDF
    Collision avoidance plays a major part in the control of the wheeled mobile robot (WMR). Most existing collision-avoidance methods mainly focus on a single WMR and environmental obstacles. There are few products that cast light on the collision-avoidance between multiple WMRs (MWMRs). In this article, the problem of simultaneous collision-avoidance and target tracking is investigated for MWMRs working in the shared environment from the perspective of optimization. The collision-avoidance strategy is formulated as an inequality constraint, which has proven to be collision free between the MWMRs. The designed MWMRs control scheme integrates path following, collision-avoidance, and WMR velocity compliance, in which the path following task is chosen as the secondary task, and collision-avoidance is the primary task so that safety can be guaranteed in advance. A Lagrangian-based dynamic controller is constructed for the dominating behavior of the MWMRs. Combining theoretical analyses and experiments, the feasibility of the designed control scheme for the MWMRs is substantiated. Experimental results show that if obstacles do not threaten the safety of the WMR, the top priority in the control task is the target track task. All robots move along the desired trajectory. Once the collision criterion is satisfied, the collision-avoidance mechanism is activated and prominent in the controller. Under the proposed scheme, all robots achieve the target tracking on the premise of being collision free

    Global motion planner for curve-tracing robots, A

    Get PDF
    Includes bibliographical references.We present a global motion planner for tracing curves in three dimensions with robot manipulator tool frames. This planner generates an efficient motion satisfying three types of constraints: constraints on the tool tip for curve tracing, robot kinematic constraints and robot link collision constraints. Motions are planned using a global search algorithm and a local planner based on a potential-field approach. This planner can be used with any robots including redundant manipulators, and can control the trade-offs between its algorithmic completeness and computation time. It can be applied in many robotic tasks such as seam welding, caulking, edge deburring and chamfering, and is expected to reduce motion programming times from days to minutes.This work has been performed at Sandia National Laboratories and supported by the U.S. Department of Energy under Contract DE-AC04-76DP00789

    Manipulability in trajectory tracking for constrained redundant manipulators via sequential quadratic programming

    Get PDF
    Trajectory tracking methods for constrained redundant manipulators are presented in this thesis, where the end-effector of a redundant serial manipulator has to track a desired trajectory while some points on its kinematic chain satisfy one or more constraints. In addition, two manipulability indexes are taken into account in order to optimize the trajectory. The first index is defined in terms of the geometric Jacobian of the manipulator in the constrained configuration. The second index is based on the constrained Jacobian, which maps velocities from joint space to task space, taking into account the holonomic constraints. Three methods for solving the trajectory tracking problem are discussed. The first two, kinematic control (KC) and quadratic programming (QP), are widely discussed in literature. The third, sequential quadratic programming (SQP), is a new approach, unlike KC or QP, has as advantages (despite some shortcomings) not explicitly depend on pseudoinverse Jacobian, derivative from the desired trajectory and linearization of indexes or constraints. A discussion of these three methods is presented in terms of tracking error, constraint violation, singularity distance, among others through experiments performed on a Baxter collaborative robot.Métodos de rastreamento de trajetória para manipuladores redundantes restritos são apresentados nesta tese, onde o efetuador de um manipulador serial redundante tem que rastrear uma trajetória desejada enquanto alguns pontos em sua cadeia cinemática satisfazem uma ou mais restrições. Além disso, dois índices de manipulabilidade são levados em consideração a fim de otimizar a trajetória para evitar singularidades. O primeiro índice é definido em função do jacobiano geométrico do manipulador na configuração restrita. O segundo índice é baseado no Jacobiano restrito, o qual mapeia velocidades no espaço das juntas para a espaço da tarefa, levando em conta as restrições holonômicas. Três métodos para resolver o problema de rastreamento de trajetória são discutidos. Os dois primeiros, controle cinemático e programação quadrática (QP), são amplamente discutidos na literatura. O terceiro, programação quadrática sequencial (SQP), é uma nova abordagem, diferentemente do controle cinemático ou QP, tem como vantagens (apesar de algumas deficiências) não depender explicitamente da pseudo-inversa de jacobianos, derivadas da trajetória desejada e linearização de índices ou restrições. Uma discussão desses três métodos é apresentada em termos de erro de rastreamento, violação da restrição, distância de singularidades, entre outros através de experimentos realizados em um robô colaborativo Baxter

    Visual Control with Adaptive Dynamical Compensation for 3D Target Tracking by Mobile Manipulators

    Get PDF
    In this paper an image-based dynamic visual feedback control for mobile manipulators is presented to solve the target tracking problem in the 3D-workspace. The design of the whole controller is based on two cascaded subsystems: a minimum norm visual kinematic controller which complies with the 3D target tracking objective, and an adaptive controller that compensates the dynamics of the mobile manipulator. Both the kinematic controller and the adaptive controller are designed to prevent from command saturation. Robot commands are defined in terms of reference velocities. Stability and robustness are proved by using Lyapunov’s method. Finally, experimental results are presented to confirm the effectiveness of the proposed visual feedback controller.Fil: Andaluz, Víctor. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Salinas, Lucio Rafael. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Toibero, Juan Marcos. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Roberti, Flavio. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore