169,963 research outputs found

    Transferring Collective Knowledge: Collective and Fragmented Teaching and Learning in the Chinese Auto Industry

    Full text link
    Collective knowledge, consisting of tacit group-embedded knowledge, is a key element of organizational capabilities. This study undertakes a multiple-case study of the transfer of collective knowledge, guided by a set of tentative constructs and propositions derived from organizational learning theory. By focusing on the group-embeddedness dimension of collective knowledge, we direct our attention to the source and recipient communities. We identify two sets of strategic choices concerning the transfer of collective knowledge: collective vs. fragmented teaching, and collective vs. fragmented learning. The empirical context of this study is international R&D capability transfer in the Chinese auto industry. From the case evidence, we find the expected benefits of collective teaching and collective learning, and also discover additional benefits of these two strategies, including the creation of a bridge network communication infrastructure. The study disclosed other conditions underlying the choice of strategies of transferring collective knowledge, including transfer effort and the level of group-embeddedness of the knowledge to be taught or re-embedded. The paper provides a group-level perspective in understanding organizational capabilities, as well as a set of refined constructs and propositions concerning strategic choices of transferring collective knowledge. The study also provides a rich description of the best practices and lessons learned in transferring organizational capabilities.http://deepblue.lib.umich.edu/bitstream/2027.42/39804/3/wp420.pd

    Preparing for a Northwest Passage: A Workshop on the Role of New England in Navigating the New Arctic

    Get PDF
    Preparing for a Northwest Passage: A Workshop on the Role of New England in Navigating the New Arctic (March 25 - 27, 2018 -- The University of New Hampshire) paired two of NSF\u27s 10 Big Ideas: Navigating the New Arctic and Growing Convergence Research at NSF. During this event, participants assessed economic, environmental, and social impacts of Arctic change on New England and established convergence research initiatives to prepare for, adapt to, and respond to these effects. Shipping routes through an ice-free Northwest Passage in combination with modifications to ocean circulation and regional climate patterns linked to Arctic ice melt will affect trade, fisheries, tourism, coastal ecology, air and water quality, animal migration, and demographics not only in the Arctic but also in lower latitude coastal regions such as New England. With profound changes on the horizon, this is a critical opportunity for New England to prepare for uncertain yet inevitable economic and environmental impacts of Arctic change

    Long-lived non-classical correlations for scalable quantum repeaters at room temperature

    Get PDF
    Heralded single-photon sources with on-demand readout are promising candidates for quantum repeaters enabling long-distance quantum communication. The need for scalability of such systems requires simple experimental solutions, thus favouring room-temperature systems. For quantum repeater applications, long delays between heralding and single-photon readout are crucial. Until now, this has been prevented in room-temperature atomic systems by fast decoherence due to thermal motion. Here we demonstrate efficient heralding and readout of single collective excitations created in warm caesium vapour. Using the principle of motional averaging we achieve a collective excitation lifetime of 0.27±0.040.27\pm 0.04 ms, two orders of magnitude larger than previously achieved for single excitations in room-temperature sources. We experimentally verify non-classicality of the light-matter correlations by observing a violation of the Cauchy-Schwarz inequality with R=1.4±0.1>1R=1.4\pm 0.1>1. Through spectral and temporal analysis we identify intrinsic four-wave mixing noise as the main contribution compromising single-photon operation of the source.Comment: 21 pages total, the first 17 pages are the main article and the remaining pages are supplemental materia

    Transferring Collective Knowledge: Collective and Fragmented Teaching and Learning in the Chinese Auto Industry

    Get PDF
    Collective knowledge, consisting of tacit group-embedded knowledge, is a key element of organizational capabilities. This study undertakes a multiple-case study of the transfer of collective knowledge, guided by a set of tentative constructs and propositions derived from organizational learning theory. By focusing on the group-embeddedness dimension of collective knowledge, we direct our attention to the source and recipient communities. We identify two sets of strategic choices concerning the transfer of collective knowledge: collective vs. fragmented teaching, and collective vs. fragmented learning. The empirical context of this study is international R&D capability transfer in the Chinese auto industry. From the case evidence, we find the expected benefits of collective teaching and collective learning, and also discover additional benefits of these two strategies, including the creation of a bridge network communication infrastructure. The study disclosed other conditions underlying the choice of strategies of transferring collective knowledge, including transfer effort and the level of group-embeddedness of the knowledge to be taught or re-embedded. The paper provides a group-level perspective in understanding organizational capabilities, as well as a set of refined constructs and propositions concerning strategic choices of transferring collective knowledge. The study also provides a rich description of the best practices and lessons learned in transferring organizational capabilities.knowledge transfer, collective knowledge, organizational capabilities, R&D capabilities, organizational learning, network, China

    Analysis of Dynamic Task Allocation in Multi-Robot Systems

    Full text link
    Dynamic task allocation is an essential requirement for multi-robot systems operating in unknown dynamic environments. It allows robots to change their behavior in response to environmental changes or actions of other robots in order to improve overall system performance. Emergent coordination algorithms for task allocation that use only local sensing and no direct communication between robots are attractive because they are robust and scalable. However, a lack of formal analysis tools makes emergent coordination algorithms difficult to design. In this paper we present a mathematical model of a general dynamic task allocation mechanism. Robots using this mechanism have to choose between two types of task, and the goal is to achieve a desired task division in the absence of explicit communication and global knowledge. Robots estimate the state of the environment from repeated local observations and decide which task to choose based on these observations. We model the robots and observations as stochastic processes and study the dynamics of the collective behavior. Specifically, we analyze the effect that the number of observations and the choice of the decision function have on the performance of the system. The mathematical models are validated in a multi-robot multi-foraging scenario. The model's predictions agree very closely with experimental results from sensor-based simulations.Comment: Preprint version of the paper published in International Journal of Robotics, March 2006, Volume 25, pp. 225-24
    • …
    corecore