5 research outputs found

    Observing Scattering Mechanisms of Bubbled Freshwater Lake Ice Using Polarimetric RADARSAT-2 (C-Band) and UW-Scat (X- and Ku-Bands)

    Get PDF
    A winter time series of ground-based (X- and Ku-bands) scatterometer and spaceborne synthetic aperture radar (SAR) (C-band) fully polarimetric observations coincident with in situ snow and ice measurements are used to identify the dominant scattering mechanism in bubbled freshwater lake ice in the Hudson Bay Lowlands near Churchill, Manitoba. Scatterometer observations identify two physical sources of backscatter from the ice cover: the snow-ice and ice-water interfaces. Backscatter time series at all frequencies show increases from the ice-water interface prior to the inclusion of tubular bubbles in the ice column based on in situ observations, indicating scattering mechanisms independent of double-bounce scatter. The co-polarized phase difference of interactions at the ice-water interface from both scatterometer and SAR observations is centered at 0° during the time series, also indicating a scattering regime other than double bounce. A Yamaguchi three-component decomposition of the RADARSAT-2 C-band time series is presented, which suggests the dominant scattering mechanism to be single-bounce off the ice-water interface with appreciable surface roughness or preferentially oriented facets, regardless of the presence, absence, or density of tubular bubble inclusions. This paper builds on newly established evidence of single-bounce scattering mechanism for freshwater lake ice and is the first to present a winter time series of ground-based and spaceborne fully polarimetric active microwave observations with polarimetric decompositions for bubbled freshwater lake ice.European Space Agency (ESTEC): 10.13039/501100000844 Natural Sciences and Engineering Research Council of Canada: 10.13039/50110000003

    Re-evaluating Scattering Mechanisms in Snow-Covered Freshwater Lake Ice Containing Bubbles Using Polarimetric Ground-based and Spaceborne Radar Data

    Get PDF
    Lakes are a prominent feature of the sub-Arctic and Arctic regions of North America, covering up to 40% of the landscape. Seasonal ice cover on northern lakes afford habitat for several flora and fauna species, and provide drinking water and overwintering fishing areas for local communities. The presence of lake ice influences lake-atmosphere exchanges by modifying the radiative properties of the lake surface and moderating the transfer of heat to the atmosphere. The thermodynamic aspects of lakes exhibit a pronounced effect on weather and regional climate, but are also sensitive to variability in climate forcings such as air temperature and snow fall, acting as proxy indicators of climate variability and change. To refine the understanding of lake-climate interactions, improved methods of monitoring lake ice properties are needed. Manual lake ice monitoring stations have dropped significantly since the 1990s and existing stations are restricted to populated and coastal regions. Recently, studies have indicated the use of radar remote sensing as a viable option for the monitoring of small lakes in remote regions due to its high spatial resolution and imaging capability independent of solar radiation or cloud cover. Active microwave radar in the frequency range of 5 – 10 GHz have successfully retrieved lake ice information pertaining to the physical status of the ice cover and areas that are frozen to bed, but have not been demonstrated as effective for the derivation of on-ice snow depth. In the 10 – 20 GHz range, radar has been shown to be sensitive to terrestrial snow cover, but has not been investigated over lakes. Utilizing a combination of spaceborne and ground-based radar systems spanning a range of 5 – 17 GHz, simulations from the Canadian Lake Ice Model (CLIMo), and ice thickness information from a shallow water ice profiler (SWIP), this research aimed to further our understanding of lake ice scattering sources and mechanisms for small freshwater lakes in the sub-Arctic. Increased comprehension of scattering mechanisms in ice advances the potential for the derivation of lake ice properties, including on-ice snow depth, lake ice thickness and identification of surface ice types. Field observations of snow-covered lake ice were undertaken during the winter seasons of 2009-2010 and 2010-2011 on Malcolm Ramsay Lake, near Churchill Manitoba. In-situ snow and ice observations were coincident with ground-based scatterometer (UW-Scat) and spaceborne synthetic aperture radar (SAR) acquisitions. UW-Scat was comprised of two fully polarimetric frequency modulated continuous wave (FMCW) radars with centre frequencies of 9.6 and 17.2 GHz (X- and Ku-bands, respectively). SAR observations included fine-beam fully polarimetric RADARSAT-2 acquisitions, obtained coincident to UW-Scat observations during 2009-2010. Three experiments were conducted to characterize and evaluate the backscatter signatures from snow-covered freshwater ice coincident to in-situ snow and ice observations. To better understand the winter backscatter (σ°) evolution of snow covered ice, three unique ice cover scenarios were observed and simulated using a bubbled ice σ° model. The range resolution of UW-SCAT provided separation of microwave interaction at the snow/ice interface (P1), and within the ice volume (P2). Ice cores extracted at the end of the observation period indicated that a considerable σ° increase at P2 of approximately 10 – 12 decibels (dB) HH/VV at X- and Ku-band occurred coincident to the timing of tubular bubble development in the ice. Similarly, complexity of the ice surface (high density micro-bubbles and snow ice) resulted in increased P1 σ° at X- and Ku-band at a magnitude of approximately 7 dB. P1 observations also indicated that Ku-band was sensitive to snowpack overlying lake ice, with σ° exhibiting a 5 (6) dB drop for VV (HH) when ~ 60 mm SWE is removed from the scatterometer field of view. Observations indicate that X-band was insensitive to changes in overlying snowpack within the field of view. A bubbled ice σ° model was developed using the dense medium radiative transfer theory under the Quasi-Crystalline Approximation (DMRT-QCA), which treated bubbles as spherical inclusions within the ice volume. Results obtained from the simulations demonstrated the capability of the DMRT model to simulate the overall magnitude of observed σ° using in-situ snow and ice measurements as input. This study improved understanding of microwave interaction with bubble inclusions incorporated at the ice surface or within the volume. The UW-Scat winter time series was then used to derive ice thickness under the assumption of interactions in range occurring at the ice-snow and ice-water interface. Once adjusted for the refractive index of ice and slant range, the distance between peak returns agreed with in-situ ice thickness observations. Ice thicknesses were derived from the distance of peak returns in range acquired in off-nadir incidence angle range 21 - 60°. Derived ice thicknesses were compared to in-situ measurements provided by the SWIP and CLIMo. Median ice thicknesses derived using UW-Scat X- and Ku-band observations agreed well with in-situ measurements (RMSE = 0.053 and 0.045 m), SWIP (RMSE = 0.082 and 0.088 m) and Canadian Lake Ice Model (CLIMo) simulations using 25% of terrestrial snowpack scenario (RMSE = 0.082 and 0.079), respectively. With the launch of fully polarimetric active microwave satellites and upcoming RADARSAT Constellation Mission (RCM), the utility of polarimetric measurements was observed for freshwater bubbled ice to further investigate scattering mechanisms identified by UW-Scat. The 2009-2010 time series of UW-Scat and RADARSAT-2 (C-band) fully polarimetric observations coincident to in-situ snow and ice measurements were acquired to identify the dominant scattering mechanism in bubbled freshwater lake ice. Backscatter time series at all frequencies show increases from the ice-water interface prior to the inclusion of tubular bubbles in the ice column based on in-situ observations, indicating scattering mechanisms independent of double-bounce scatter, contrary to the longstanding hypothesis of double-bounce scatter off tubular bubbles and the ice-water interface. The co-polarized phase difference of interactions at the ice-water interface from both UW-Scat and SAR observations were centred at 0°, indicating a scattering regime other than double bounce. A Yamaguchi three-component decomposition of the time series suggested the dominant scattering mechanism to be single-bounce off the ice-water interface with appreciable surface roughness or preferentially oriented facets. Overall, this work provided new insight into the scattering sources and mechanisms within snow-covered freshwater lake ice containing spherical and tubular bubbles

    Forward Modelling of Multifrequency SAR Backscatter of Snow-Covered Lake Ice: Investigating Varying Snow and Ice Properties Within a Radiative Transfer Framework

    Get PDF
    Lakes are a key feature in the Northern Hemisphere landscape. The coverage of lakes by ice cover has important implications for local weather conditions and can influence energy balance. The presence of lake ice is also crucial for local economies, providing transportation routes, and acting as a source of recreation/tourism and local customs. Both lake ice cover, from which ice dates and duration can be derived (i.e., ice phenology), and ice thickness are considered as thematic variables of lakes as an essential climate variable by the Global Climate Observing System (GCOS) for understanding how climate is changing. However, the number of lake ice phenology ground observations has declined over the past three decades. Remote sensing provides a method of addressing this paucity in observations. Active microwave remote sensing, in particular synthetic aperture radar (SAR), is popular for monitoring ice cover as it does not rely on sunlight and the resolution allows for the monitoring of small and medium-sized lakes. In recent years, our understanding of the interaction between active microwave signals and lake ice has changed, shifting from a double bounce mechanism to single bounce at the ice-water interface. The single bounce, or surface scattering, at the ice-water interface is due to a rough surface and high dielectric contrast between ice and water. However, further work is needed to fully understand how changes in different lake ice properties impact active microwave signals. Radiative transfer modelling has been used to explore these interactions, but there are a variety of limitations associated with past experiments. This thesis aimed to faithfully represent lake ice using a radiative transfer framework and investigate how changes in lake ice properties impact active microwave backscatter. This knowledge was used to model backscatter throughout ice seasons under both dry and wet conditions. The radiative transfer framework used in this thesis was the Snow Microwave Radiative Transfer (SMRT) model. To investigate how broad changes in ice properties impact microwave backscatter, SMRT was used to conduct experiments on ice columns representing a shallow lake with tubular bubbles and a deep lake without tubular bubbles at L/C/X-band frequencies. The Canadian Lake Ice Model (CLIMo) was used to parameterize SMRT. Ice properties investigated included ice thickness, snow ice bubble radius and porosity, root mean square (RMS) height of the ice-water interface, correlation length of the ice-water interface, and tubular bubble radius and porosity. Modelled backscatter indicated that changes in ice thickness, snow ice porosity, and tubular bubble radius and porosity had little impact on microwave backscatter. The property that had the largest impact on backscatter was RMS height at the ice-water interface, confirming the results of other recent studies. L and C-band frequencies were found to be most sensitive to changes in RMS height. Bubble radius had a smaller impact on backscatter, but X-band was found to be most sensitive to changes in this property and would be a valuable frequency for studying surface ice conditions. From the results of these initial experiments, SMRT was then used to simulate the backscatter from lake ice for two lakes during different winter seasons. Malcolm Ramsay Lake near Churchill, Manitoba, represented a shallow lake with dense tubular bubbles and Noell lake near Inuvik, Northwest Territories, represented a deep lake with no tubular bubbles. Both field data and CLIMo simulations for the two lakes were used to parameterize SMRT. Because RMS height was determined to be the ice property that had the largest impact on backscatter, simulations focused on optimizing this value for both lakes. Modelled backscatter was validated using C-band satellite imagery for Noell Lake and L/C/X-band imagery for Malcolm Ramsay Lake. The root mean square error values for both lakes ranged from 0.38 to 2.33 dB and Spearman’s correlation coefficient (ρ) values >0.86. Modelled backscatter for Noell Lake was closer to observed values compared to Malcolm Ramsay Lake. Optimized values of RMS height provided a better fit compared to a stationary value and indicated that roughness likely increases rapidly at the start of the ice season but plateaus as ice growth slows. SMRT was found to model backscatter from ice cover well under dry conditions, however, modelling backscatter under wet conditions is equally important. Detailed field observations for Lake OulujĂ€rvi in Finland were used to parameterize SMRT during three different conditions. The first was lake ice with a dry snow cover, the second with an overlying layer of wet snow, and the third was when a slush layer was present on the ice surface. Experiments conducted under dry conditions continued to support the dominance of scattering from the ice-water interface. However, when a layer of wet snow or slush layer was introduced the dominant scattering interface shifted to the new wet layer. Increased roughness at the boundary of these wet layers resulted in an increase in backscatter. The increase in backscatter is attributed to the higher dielectric constant value of these layers. The modelled backscatter was found to be representative of observed backscatter from Sentinel-1. The body of work of this thesis indicated that the SMRT framework can be used to faithfully represent lake ice and model backscatter from ice covers and improved understanding of the interaction between microwave backscatter and ice properties. With this improved understanding inversion models can be developed to retrieve roughness of the ice-water interface, this could be used to build other models to estimate ice thickness based on other remote sensing data. Additionally, insights into the impact of wet conditions on radar backscatter could prove useful in identifying unsafe ice locations

    Technique-Based Exploitation Of Low Grazing Angle SAR Imagery Of Ship Wakes

    Get PDF
    The pursuit of the understanding of the effect a ship has on water is a field of study that is several hundreds of years old, accelerated during the years of the industrial revolution where the efficiency of a ship’s engine and hull determined the utility of the burgeoning globally important sea lines of communication. The dawn of radar sensing and electronic computation have expanding this field of study still further where new ground is still being broken. This thesis looks to address a niche area of synthetic aperture radar imagery of ship wakes, specifically the imaging geometry utilising a low grazing angle, where significant non-linear effects are often dominant in the environment. The nuances of the synthetic aperture radar processing techniques compounded with the low grazing angle geometry to produce unusual artefacts within the imagery. It is the understanding of these artefacts that is central to this thesis. A sub-aperture synthetic aperture radar technique is applied to real data alongside coarse modelling of a ship and its wake before finally developing a full hydrodynamic model for a ship’s wake from first principles. The model is validated through comparison with previously developed work. The analysis shows that the resultant artefacts are a culmination of individual synthetic aperture radar anomalies and the reaction of the radar energy to the ambient sea surface and spike events
    corecore