236 research outputs found

    Unknown dynamics estimator-based output-feedback control for nonlinear pure-feedback systems

    Get PDF
    Most existing adaptive control designs for nonlinear pure-feedback systems have been derived based on backstepping or dynamic surface control (DSC) methods, requiring full system states to be measurable. The neural networks (NNs) or fuzzy logic systems (FLSs) used to accommodate uncertainties also impose demanding computational cost and sluggish convergence. To address these issues, this paper proposes a new output-feedback control for uncertain pure-feedback systems without using backstepping and function approximator. A coordinate transform is first used to represent the pure-feedback system in a canonical form to evade using the backstepping or DSC scheme. Then the Levant's differentiator is used to reconstruct the unknown states of the derived canonical system. Finally, a new unknown system dynamics estimator with only one tuning parameter is developed to compensate for the lumped unknown dynamics in the feedback control. This leads to an alternative, simple approximation-free control method for pure-feedback systems, where only the system output needs to be measured. The stability of the closed-loop control system, including the unknown dynamics estimator and the feedback control is proved. Comparative simulations and experiments based on a PMSM test-rig are carried out to test and validate the effectiveness of the proposed method

    Entwurf eines Beobachterbasierten Robusten Nichtlinearen Reglers

    Get PDF
    Due to observers ability in the estimation of internal system states, observers play an important role in the field of control and monitoring of dynamical systems. In reality, using sensors to measure the desired system states may be costly and/or affects the reliability of technical systems. Besides, some signals are impractical or inaccessible to be measured and using of sensors leads to significant errors such as stochastic noise. The solution of using observers is well-known since 1964. Besides the estimation of system states, some observers are able to estimate unknown inputs affecting the system dynamics such as disturbance forces or torques. These features are helpful for supervision and fault diagnosis tasks by monitoring the sensors and system components or for advanced control purposes by realizing observer-based control for practical systems. Among the state and disturbance observers, Proportional-Integral-Observer (PIO) is highly appreciated because of its simple structure and design procedure. Furthermore, using sufficiently high gain PIO, a robust estimation of system states and unknown inputs can be achieved. Besides taking the advantages of high gain design, the disadvantages of large overshoot and strong influence from measurement noise (as typical drawbacks of high gain utilization) in the control and estimation performance can not be neglected. Recently, some researches have been done to overcome the disadvantages of high gain observers and to adaptively adjust the gain of observer based on the resulting actual performance. Considering the advantages and disadvantages of high gain PIO besides the recent developments, it is evident that there are still open problems and questions to be solved in the area of optimal design of PIO and robust nonlinear control approaches based on PIO. On the other hand, the PI-Observer can be used in combination with linear/nonlinear control approaches (due to its simple structure and capability to estimate the system states and disturbances) to improve the performance and robustness of the closed-loop control results. Therefore, this thesis focuses on development and improvement of high gain Proportional-Integral-Observer as well as utilization of this observer in combination with well-known robust control approaches for possible general application in nonlinear systems. The Modified Advanced PIO (MAPIO) is introduced in this work as the extended version of Advanced PIO (APIO) to tune the gain of PIO according to the current situation. A cost function is defined so that the estimation performance and the related energy can be evaluated. Comparison between advanced observer design approaches has been done in the task of reconstructing the nonlinear characteristics and estimating the external inputs (contact forces) acting to elastic mechanical structures. Simulation results in open-loop and closed-loop cases verified that the performance of MAPIO in the task of unknown input estimation is more robust to different levels of measurement noise in comparison to previous methods e.g. APIO and standard high/low gain PIO. Furthermore, a new gain design approach of Proportional-Integral-Observer is proposed to overcome the disadvantages of high gain PIO and to realize the estimation of fast dynamical behaviors like unknown impact force. The dynamics of this force input is assumed as unknown. The idea of funnel control is taking into consideration to design the PIO gain. The important advantage of the proposed approach compared to previously published PIO gain design is the self-adjustment of observer gains according to the actual estimation situation inside the predefined funnel area. In this thesis it is shown that the proposed funnel PI-Observer algorithm allows adaptive PIO gain calculation, being able to be situatively adjusted even in the presence of measurement noise. Stability proof of funnel PI-Observer is investigated according to the switching observer condition and Lyapunov theory. The effectiveness of the proposed method is evaluated by simulation and experimental results using an elastic beam test rig. Furthermore, a nonlinear MIMO mechanical system is used to verify the effectiveness of the proposed method in the closed-loop context. Additionally, this thesis provides two new PI-Observer-based robust controllers as PIO-based sliding mode control and PIO-based backstepping control to improve the position tracking performance of a hydraulic differential cylinder system in the presence of uncertainties e.g. modeling errors, disturbances, and measurement noise. To use the linear PIO for estimation of system states and unknown inputs, the input-output feedback linearization approach is used to linearize the nonlinear model of hydraulic differential cylinder system. Thereupon the result of state and unknown input estimation is integrated into the structure of robust control design (here SMC and backstepping control) to eliminate the effects of uncertainties and disturbances. The introduced PIO-based robust controllers guarantee the ultimate boundness of the tracking error in the presence of uncertainties. The closed-loop stability is proved using Lyapunov theory in both cases. The proposed methods are experimentally validated and the results are compared with the standard SMC and industrial standard approach P-Controller in the presence of measurement noise, model uncertainties, and external disturbances. A general comparison of SMC and backstepping control approaches is provided in the last part of this work.Die Regelung und Überwachung dynamischer Systeme kann voraussetzen, dass Informationen über interne Systemzustände bekannt sind. Die Verwendung von Sensoren zur Erfassung aller Systemzustände kann erhöhte Kosten zur Folge haben und die Systemzuverlässigkeit negativ beeinflussen. Weitere Probleme ergeben sich dadurch, dass ggf. nicht jeder Systemzustand sensorisch erfasst werden kann. Der Beobachter erlaubt die Rekonstruktion aller Systemzustände auf Grundlage weniger Messungen. Neben Systemzuständen können externe Eingangsgrößen wie Reibmomente und Störungen geschätzt werden. Als Konsequenz ermöglicht der Beobachter eine gegenüber Störungen robuste Regelung und Fehlerdiagnose technischer Systeme. Der Proportional-Integral-Observer (PIO) kann mittels bestehender Entwurfsverfahren einfach implementiert werden. Durch Anpassen der Rückkopplungsmatrix eignet sich der PIO zur kombinierten Schätzung von Zuständen und unbekannten Eingangsgrößen. In diesem Zusammenhang spielt die Wahl einer betragsmäßig großen Rückkopplungsverstärkungsmatrix, als sogenannter High Gain Ansatz, eine entscheidende Rolle. Weiterhin hängt die Performance des PIO von der unbekannten Charakteristik der zu schätzenden Eingangsgröße ab. Diese Arbeit befasst sich mit der Entwicklung optimierter Entwurfsverfahren für den Proportional-Integral-Observer und der Entwicklung und Anwendung beobachterbasierter Konzepte zur robusten Regelung nichtlinearer Systeme. In dieser Arbeit wird der modifizierte Advanced PIO (MAPIO) als erweiterte Version des Advanced PIO (APIO) eingeführt. Der Schätzfehler von MAPIO wird über ein Gütefunktional abgebildet. Das Gütefunktional wird durch Anpassung der Rückkopplungsverstärkungsmatrix an die Charakteristik der unbekannten Eingangsgröße minimiert. Die Performance der modifizierten Beobachterentwurfsansätze wird anhand eines praktischen Beispiels bewertet. Geschätzt wird eine unbekannte Kontaktkraft mit nichtlinearer Charakteristik, die auf ein mechanisches System wirkt. Anhand eines Simulationsbeispiels im offenen und geschlossenen Regelkreis wird die Performance von MAPIO gegenüber vorherigen Verfahren APIO und PIO verifiziert. Basierend auf der Idee des Funnel Reglers wird ein neuartiges Entwurfskonzept für den Proportional-Integral-Observer vorgestellt. Die Nachteile des PIO-Konzeptes mit hohem Verstärkungsfaktor können überwunden werden und Schätzungen schneller dynamischer Verhaltensweisen lassen sich realisieren. Der Vorteil der neuartigen Funnel PIO Methode ist, dass der Schätzfehler in einem definierten Bereich, der sogenannten Funnel-Area, verbleibt. In dieser Arbeit wird gezeigt, dass der vorgeschlagene Funnel PIO Algorithmus eine adaptive PIO Verstärkungsberechnung ermöglicht, die auch in Gegenwart von Messrauschen situativ eingestellt werden kann. Der Stabilitätsnachweis von Funnel PIO wird mittels der Lyapunov Theorie untersucht. Die Wirksamkeit der vorgeschlagenen Methode wird durch Simulation und experimentelle Ergebnisse validiert. Eine auf einen elastischen Balken wirkende äußere Kraft mit nichtlinearer Charakteristik wird geschätzt. Ein nichtlineares MIMO System wird verwendet, um die Wirksamkeit der vorgeschlagenen Methode im geschlossenen Regelkreis zu verifizieren. In dieser Arbeit werden zwei neue PI-Observer basierte robuste Regelungen (PIO-basierte Sliding Mode und PIO-basierte Backstepping Regelung) vorgestellt. Die Positionsregelung eines hydraulischen Differentialzylinders in Gegenwart von Modellunsicherheiten, Störungen und Messrauschen wird untersucht. Zur Anwendung der PIO-basierten Störgrößenschätzung wird eine Ein-/Ausgangs-Linearisierung des nichtlinearen Modells vorgenommen. Die Stabilität des geschlossenen Regelkreises wird in beiden Fällen mit der Lyapunov Theorie bewiesen. Die vorgeschlagenen Methoden werden experimentell validiert und die Ergebnisse werden mit dem Standard Sliding Mode Regler und einem P-Regler in Gegenwart von Messrauschen, Modellunsicherheiten und externen Störungen verglichen

    Adaptive Finite-time Fuzzy Control of Nonlinear Active Suspension Systems With Input Delay

    Get PDF
    This paper presents a new adaptive fuzzy control scheme for active suspension systems subject to control input time delay and unknown nonlinear dynamics. First, a predictor based compensation scheme is constructed to address the effect of input delay in the closed-loop system. Then, a fuzzy logic system (FLS) is employed as the function approximator to address the unknown nonlinearities. Finally, to enhance the transient suspension response, a novel parameter estimation error based finite-time (FT) adaptive algorithm is developed to online update the unknown FLS weights, which differs from traditional estimation methods, e.g. gradient algorithm with e-modification or σ-modification. In this framework, both the suspension and estimation errors can achieve convergence in finite-time. A Lyapunov-Krasovskii functional is constructed to prove the closed-loop system stability. Comparative simulation results based on a dynamic simulator built in a professional vehicle simulation software, Carsim, are provided to demonstrate the validity of the proposed control approach, and show its effectiveness to operate active suspension systems safely and reliably in various road conditions

    Attitude and position control of flapping-wing micro aerial vehicles

    Get PDF
    Compared with the fixed-wing and rotor aircraft, the flapping-wing micro aerial vehicle is of great interest to many communities because of its high efficiency and flexible maneuverability. However, issues such as the small size of the vehicles, complex dynamics and complicated systems due to uncertainty, nonlinearity, and multi-coupled parameters cause several significant challenges in construction and control. In this thesis, based on Euler angle and unit quaternion representations, the backstepping technique is used to design attitude stabilization controllers and position tracking controllers for a good control performance of a flapping-wing micro aerial vehicle. The attitude control of a apping{wing micro aerial vehicle is achieved by controlling the aerodynamic forces and torques, which are highly nonlinear and time{varying. To control such a complex system, a dynamic model is derived by using the Newton{Euler method. Based on the mathematical model, the backstepping technique is applied with the Lyapunov stability theory for the controller design. Moreover, because a flapping-wing micro aerial vehicle has very exible wings and oscillatory flight characteristics, the adaptive fuzzy control law as well as H1 control strategy are also used to estimate the unknown parameters and attenuate the impact of external disturbances. What is more, due to the problem of the gimbal lock of Euler angles, the unit quaternion representation is used afterwards. As for position control, the forward movement is controlled by the thrust and lift force generated by the wings of flapping-wing micro aerial vehicles. To make the actual position and velocity follow the desired trajectory and velocity, the backstepping scheme is used based on a unit quaternion representation. In order to reduce the complexity of differentiation of the virtual control in the design process, a dynamic surface control method is then used by the idea of a low-pass filter. Matlab simulation results prove the mathematical feasibility and also illustrate that all the proposed controllers have a stable control performance

    New Approaches in Automation and Robotics

    Get PDF
    The book New Approaches in Automation and Robotics offers in 22 chapters a collection of recent developments in automation, robotics as well as control theory. It is dedicated to researchers in science and industry, students, and practicing engineers, who wish to update and enhance their knowledge on modern methods and innovative applications. The authors and editor of this book wish to motivate people, especially under-graduate students, to get involved with the interesting field of robotics and mechatronics. We hope that the ideas and concepts presented in this book are useful for your own work and could contribute to problem solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can only be highlighted at several spots but not completely covered by a single book

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described
    corecore