5,368 research outputs found

    Control Theory in Engineering

    Get PDF
    The subject matter of this book ranges from new control design methods to control theory applications in electrical and mechanical engineering and computers. The book covers certain aspects of control theory, including new methodologies, techniques, and applications. It promotes control theory in practical applications of these engineering domains and shows the way to disseminate researchers’ contributions in the field. This project presents applications that improve the properties and performance of control systems in analysis and design using a higher technical level of scientific attainment. The authors have included worked examples and case studies resulting from their research in the field. Readers will benefit from new solutions and answers to questions related to the emerging realm of control theory in engineering applications and its implementation

    Iterative learning control for impulsive multi-agent systems with varying trial lengths

    Get PDF
    In this paper, we introduce iterative learning control (ILC) schemes with varying trial lengths (VTL) to control impulsive multi-agent systems (I-MAS). We use domain alignment operator to characterize each tracking error to ensure that the error can completely update the control function during each iteration. Then we analyze the system’s uniform convergence to the target leader. Further, we use two local average operators to optimize the control function such that it can make full use of the iteration error. Finally, numerical examples are provided to verify the theoretical results

    Data-Driven Architecture to Increase Resilience In Multi-Agent Coordinated Missions

    Get PDF
    The rise in the use of Multi-Agent Systems (MASs) in unpredictable and changing environments has created the need for intelligent algorithms to increase their autonomy, safety and performance in the event of disturbances and threats. MASs are attractive for their flexibility, which also makes them prone to threats that may result from hardware failures (actuators, sensors, onboard computer, power source) and operational abnormal conditions (weather, GPS denied location, cyber-attacks). This dissertation presents research on a bio-inspired approach for resilience augmentation in MASs in the presence of disturbances and threats such as communication link and stealthy zero-dynamics attacks. An adaptive bio-inspired architecture is developed for distributed consensus algorithms to increase fault-tolerance in a network of multiple high-order nonlinear systems under directed fixed topologies. In similarity with the natural organisms’ ability to recognize and remember specific pathogens to generate its immunity, the immunity-based architecture consists of a Distributed Model-Reference Adaptive Control (DMRAC) with an Artificial Immune System (AIS) adaptation law integrated within a consensus protocol. Feedback linearization is used to modify the high-order nonlinear model into four decoupled linear subsystems. A stability proof of the adaptation law is conducted using Lyapunov methods and Jordan decomposition. The DMRAC is proven to be stable in the presence of external time-varying bounded disturbances and the tracking error trajectories are shown to be bounded. The effectiveness of the proposed architecture is examined through numerical simulations. The proposed controller successfully ensures that consensus is achieved among all agents while the adaptive law v simultaneously rejects the disturbances in the agent and its neighbors. The architecture also includes a health management system to detect faulty agents within the global network. Further numerical simulations successfully test and show that the Global Health Monitoring (GHM) does effectively detect faults within the network

    Consensus tracking problem for linear fractional multi-agent systems with initial state error

    Get PDF
    In this paper, we discuss the consensus tracking problem by introducing two iterative learning control (ILC) protocols (namely, Dα-type and PDα-type) with initial state error for fractional-order homogenous and heterogenous multi-agent systems (MASs), respectively. The initial state of each agent is fixed at the same position away from the desired one for iterations. For both homogenous and heterogenous MASs, the Dα-type ILC rule is first designed and analyzed, and the asymptotical convergence property is carefully derived. Then, an additional P-type component is added to formulate a PDα-type ILC rule, which also guarantees the asymptotical consensus performance. Moreover, it turns out that the PDα-type ILC rule can further adjust the final performance. Two numerical examples are provided to verify the theoretical results

    On leaderless consensus of fractional-order nonlinear multi-agent systems via event-triggered control

    Get PDF
    The consensus problem of fractional-order multi-agent systems is investigated by eventtriggered control in this paper. Based on the graph theory and the Lyapunov functional approach, the conditions for guaranteeing the consensus are derived. Then, according to some basic theories of fractional-order differential equation and some properties of Mittag–Leffler function, the Zeno behavior could be excluded. Finally, a simulation example is given to check the effectiveness of the theoretical result

    Event-triggered leader-following formation control of general linear multi-agent systems with distributed infinite input time delays

    Get PDF
    By employing event-triggered control technique, this paper investigates the leaderfollowing formation control problem of general linear multi-agent systems with distributed infinite input time delays. To decrease computing costs, a novel event-triggered formation protocol taking into consideration of the distributed infinite time delays between agents is put forward. Under the designed triggering function and triggering condition, a sufficient condition on leader-following formation is obtained, and then the Zeno-behavior of triggering time sequences is excluded for the concerned closed-loop system. The continuous update of controller for each agent is avoided. Finally, the correctness and the effectiveness of these theoretical results are demonstrated by two numerical examples

    Iterative learning control for multi-agent systems with impulsive consensus tracking

    Get PDF
    In this paper, we adopt D-type and PD-type learning laws with the initial state of iteration to achieve uniform tracking problem of multi-agent systems subjected to impulsive input. For the multi-agent system with impulse, we show that all agents are driven to achieve a given asymptotical consensus as the iteration number increases via the proposed learning laws if the virtual leader has a path to any follower agent. Finally, an example is illustrated to verify the effectiveness by tracking a continuous or piecewise continuous desired trajectory
    • …
    corecore