91 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Interval estimation of switched Takagi-Sugeno systems with unmeasurable premise variables

    Get PDF
    International audienceThis paper deals with interval observers design for nonlinear switched systems. The nonlinear modes are represented by the Takagi-Sugeno (T-S) fuzzy models with premise variables depending on unmeasurable terms, e.g. the state vector. This T-S structure can be used to represent exactly a nonlinear switched system in a compact set of the state space. The introduced method in this paper allows to compute the lower and upper bounds of the system state under the assumption that the disturbances as well as the measurement noises are unknown but bounded. First, the stability conditions of the proposed T-S interval observers are developed via Linear Matrix Inequality (LMI) formulations to ensure the convergence of the nonnegative observation error dynamics. Then, changes of coordinates are employed to relax the restrictive requirement of nonnegativity constraints. Theoretical results are applied to a numerical example to illustrate the effectiveness of the proposed method

    Integrated fault estimation and accommodation design for discrete-time Takagi-Sugeno fuzzy systems with actuator faults

    Get PDF
    This paper addresses the problem of integrated robust fault estimation (FE) and accommodation for discrete-time Takagi–Sugeno (T–S) fuzzy systems. First, a multiconstrained reduced-order FE observer (RFEO) is proposed to achieve FE for discrete-time T–S fuzzy models with actuator faults. Based on the RFEO, a new fault estimator is constructed. Then, using the information of online FE, a new approach for fault accommodation based on fuzzy-dynamic output feedback is designed to compensate for the effect of faults by stabilizing the closed-loop systems. Moreover, the RFEO and the dynamic output feedback fault-tolerant controller are designed separately, such that their design parameters can be calculated readily. Simulation results are presented to illustrate our contributions

    Observer Design for a Class of Nonlinear Descriptor Systems: A Takagi-Sugeno Approach with Unmeasurable Premise Variables

    Get PDF
    The Takagi-Sugeno (T-S) fuzzy observer for dynamical systems described by ordinary differential equations is widely discussed in the literature. The aim of this paper is to extend this observer design to a class of T-S descriptor systems with unmeasurable premise variables. In practice, the computation of solutions of differential-algebraic equations requires the combination of an ordinary differential equations (ODE) routine together with an optimization algorithm. Therefore, a natural way permitting to estimate the state of such a system is to design a procedure based on a similar numerical algorithm. Beside some numerical difficulties, the drawback of such a method lies in the fact that it is not easy to establish a rigorous proof of the convergence of the observer. The main result of this paper consists in showing that the state estimation problem for a class of T-S descriptor systems can be achieved by using a fuzzy observer having only an ODE structure. The convergence of the state estimation error is studied using the Lyapunov theory and the stability conditions are given in terms of linear matrix inequalities (LMIs). Finally, an application to a model of a heat exchanger pilot process is given to illustrate the performance of the proposed observer

    Performance Guarantee of a Class of Continuous LPV System with Restricted-Model-Based Control

    Get PDF
    This paper considers the problem of the robust stabilisation of a class of continuous Linear Parameter Varying (LPV) systems under specifications. In order to guarantee the stabilisation of the plant with very large parameter uncertainties or variations, an output derivative estimation controller is considered. The design of such controller that guarantee desired  induced gain performance is examined. Furthermore, a simple procedure for achieving the  norm performance is proved for any all-poles single-input/single-output second order plant. The proof of stability is based on the polytopic representation of the closed loop under Lyapunov conditions and system transformations. Finally, the effectiveness of the proposed method is verified via a numerical example

    Filtering of Interval Type-2 Fuzzy Systems With Intermittent Measurements

    Get PDF
    corecore