527 research outputs found

    Identification and Optimal Linear Tracking Control of ODU Autonomous Surface Vehicle

    Get PDF
    Autonomous surface vehicles (ASVs) are being used for diverse applications of civilian and military importance such as: military reconnaissance, sea patrol, bathymetry, environmental monitoring, and oceanographic research. Currently, these unmanned tasks can accurately be accomplished by ASVs due to recent advancements in computing, sensing, and actuating systems. For this reason, researchers around the world have been taking interest in ASVs for the last decade. Due to the ever-changing surface of water and stochastic disturbances such as wind and tidal currents that greatly affect the path-following ability of ASVs, identification of an accurate model of inherently nonlinear and stochastic ASV system and then designing a viable control using that model for its planar motion is a challenging task. For planar motion control of ASV, the work done by researchers is mainly based on the theoretical modeling in which the nonlinear hydrodynamic terms are determined, while some work suggested the nonlinear control techniques and adhered to simulation results. Also, the majority of work is related to the mono- or twin-hull ASVs with a single rudder. The ODU-ASV used in present research is a twin-hull design having two DC trolling motors for path-following motion. A novel approach of time-domain open-loop observer Kalman filter identifications (OKID) and state-feedback optimal linear tracking control of ODU-ASV is presented, in which a linear state-space model of ODU-ASV is obtained from the measured input and output data. The accuracy of the identified model for ODU-ASV is confirmed by validation results of model output data reconstruction and benchmark residual analysis. Then, the OKID-identified model of the ODU-ASV is utilized to design the proposed controller for its planar motion such that a predefined cost function is minimized using state and control weighting matrices, which are determined by a multi-objective optimization genetic algorithm technique. The validation results of proposed controller using step inputs as well as sinusoidal and arc-like trajectories are presented to confirm the controller performance. Moreover, real-time water-trials were performed and their results confirm the validity of proposed controller in path-following motion of ODU-ASV

    The Fifth NASA/DOD Controls-Structures Interaction Technology Conference, part 1

    Get PDF
    This publication is a compilation of the papers presented at the Fifth NASA/DoD Controls-Structures Interaction (CSI) Technology Conference held in Lake Tahoe, Nevada, March 3-5, 1992. The conference, which was jointly sponsored by the NASA Office of Aeronautics and Space Technology and the Department of Defense, was organized by the NASA Langley Research Center. The purpose of this conference was to report to industry, academia, and government agencies on the current status of controls-structures interaction technology. The agenda covered ground testing, integrated design, analysis, flight experiments and concepts

    Adaptive Robotic Control Driven by a Versatile Spiking Cerebellar Network

    Get PDF
    The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.European Union (Human Brain Project) REALNET FP7-ICT270434 CEREBNET FP7-ITN238686 HBP-60410

    A white paper: NASA virtual environment research, applications, and technology

    Get PDF
    Research support for Virtual Environment technology development has been a part of NASA's human factors research program since 1985. Under the auspices of the Office of Aeronautics and Space Technology (OAST), initial funding was provided to the Aerospace Human Factors Research Division, Ames Research Center, which resulted in the origination of this technology. Since 1985, other Centers have begun using and developing this technology. At each research and space flight center, NASA missions have been major drivers of the technology. This White Paper was the joint effort of all the Centers which have been involved in the development of technology and its applications to their unique missions. Appendix A is the list of those who have worked to prepare the document, directed by Dr. Cynthia H. Null, Ames Research Center, and Dr. James P. Jenkins, NASA Headquarters. This White Paper describes the technology and its applications in NASA Centers (Chapters 1, 2 and 3), the potential roles it can take in NASA (Chapters 4 and 5), and a roadmap of the next 5 years (FY 1994-1998). The audience for this White Paper consists of managers, engineers, scientists and the general public with an interest in Virtual Environment technology. Those who read the paper will determine whether this roadmap, or others, are to be followed

    Bio-inspired Dynamic Control Systems with Time Delays

    Get PDF
    The world around us exhibits a rich and ever changing environment of startling, bewildering and fascinating complexity. Almost everything is never as simple as it seems, but through the chaos we may catch fleeting glimpses of the mechanisms within. Throughout the history of human endeavour we have mimicked nature to harness it for our own ends. Our attempts to develop truly autonomous and intelligent machines have however struggled with the limitations of our human ability. This has encouraged some to shirk this responsibility and instead model biological processes and systems to do it for us. This Thesis explores the introduction of continuous time delays into biologically inspired dynamic control systems. We seek to exploit rich temporal dynamics found in physical and biological systems for modelling complex or adaptive behaviour through the artificial evolution of networks to control robots. Throughout, arguments have been presented for the modelling of delays not only to better represent key facets of physical and biological systems, but to increase the computational potential of such systems for the synthesis of control. The thorough investigation of the dynamics of small delayed networks with a wide range of time delays has been undertaken, with a detailed mathematical description of the fixed points of the system and possible oscillatory modes developed to fully describe the behaviour of a single node. Exploration of the behaviour for even small delayed networks illustrates the range of complex behaviour possible and guides the development of interesting solutions. To further exploit the potential of the rich dynamics in such systems, a novel approach to the 3D simulation of locomotory robots has been developed focussing on minimising the computational cost. To verify this simulation tool a simple quadruped robot was developed and the motion of the robot when undergoing a manually designed gait evaluated. The results displayed a high degree of agreement between the simulation and laser tracker data, verifying the accuracy of the model developed. A new model of a dynamic system which includes continuous time delays has been introduced, and its utility demonstrated in the evolution of networks for the solution of simple learning behaviours. A range of methods has been developed for determining the time delays, including the novel concept of representing the time delays as related to the distance between nodes in a spatial representation of the network. The application of these tools to a range of examples has been explored, from Gene Regulatory Networks (GRNs) to robot control and neural networks. The performance of these systems has been compared and contrasted with the efficacy of evolutionary runs for the same task over the whole range of network and delay types. It has been shown that delayed dynamic neural systems are at least as capable as traditional Continuous Time Recurrent Neural Networks (CTRNNs) and show significant performance improvements in the control of robot gaits. Experiments in adaptive behaviour, where there is not such a direct link between the enhanced system dynamics and performance, showed no such discernible improvement. Whilst we hypothesise that the ability of such delayed networks to generate switched pattern generating nodes may be useful in Evolutionary Robotics (ER) this was not borne out here. The spatial representation of delays was shown to be more efficient for larger networks, however these techniques restricted the search to lower complexity solutions or led to a significant falloff as the network structure becomes more complex. This would suggest that for anything other than a simple genotype, the direct method for encoding delays is likely most appropriate. With proven benefits for robot locomotion and the open potential for adaptive behaviour delayed dynamic systems for evolved control remain an interesting and promising field in complex systems research

    Air Force Institute of Technology Research Report 2005

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, and Engineering Physics

    Special Topics in Information Technology

    Get PDF
    This open access book presents outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the best theses defended in 2021-22 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Atmosphere, Magnetosphere and Plasmas in Space (AMPS). Spacelab payload definition study. Volume 5: Technical summary

    Get PDF
    Engineering and operational facets associated with the implementation of the first two AMPS flights are covered. The payload is described including all systems and subsystems and the mission planning and flight operations are described too. Payload integration, ground operations, and logistics are included along with key supporting analyses and mass properties
    • …
    corecore