2,618 research outputs found

    Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching

    Get PDF
    We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel โ€œvisual channelโ€ condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed

    Bond graph model based control of robotic manipulators

    Get PDF
    The performance of robotic manipulators is critical to their widespread use in industry. As manipulators become faster, their potential productivity can rise thus improving the return on the investment required to purchase them. Improving accuracy, on the other hand, increases the range of tasks for which the manipulator is suitable. The speed and accuracy of a manipulator is partly determined by the capability of the algorithm used to control it. Whilst being a highly non-linear multiple input, multiple output device, however, most industrial controllers are derived on the basis that the robot is a series of independent, linear actuator+ link subsystems. The resulting independent joint controller is simple to design and implement but is limited in its performance as link interactions and the non-linear effects of centrifugal and Coriolis forces degrade the accuracy at high manipulator velocities. Improvements in the control of manipulators may be made by incorporating a mathematical model of the manipulator in the control algorithm. Control schemes such as `computed torque' incorporate an inverse model of the manipulator to calculate the input torques required to force the end-effector to follow a desired trajectory. The equations of motion required to implement these controllers are large and complex even for relatively simple manipulators. This thesis explores how bond graph representations of robotic manipulators may be used to automate the implementation of model based controllers. To provide a practical basis for this research the bond graph derived controllers are tested on an experimental rigid, planar, direct drive two-link manipulator. It is shown how the bondgraph for this manipulator, including d.c. motor actuators, can be constructed and used to derive the equations of motion of the manipulator automatically. The bond graph model is then validated by comparing simulations obtained using these equations of motion with experimental data

    Visual Servoing in Robotics

    Get PDF
    Visual servoing is a well-known approach to guide robots using visual information. Image processing, robotics, and control theory are combined in order to control the motion of a robot depending on the visual information extracted from the images captured by one or several cameras. With respect to vision issues, a number of issues are currently being addressed by ongoing research, such as the use of different types of image features (or different types of cameras such as RGBD cameras), image processing at high velocity, and convergence properties. As shown in this book, the use of new control schemes allows the system to behave more robustly, efficiently, or compliantly, with fewer delays. Related issues such as optimal and robust approaches, direct control, path tracking, or sensor fusion are also addressed. Additionally, we can currently find visual servoing systems being applied in a number of different domains. This book considers various aspects of visual servoing systems, such as the design of new strategies for their application to parallel robots, mobile manipulators, teleoperation, and the application of this type of control system in new areas

    Extended Kalman Filter Based Modelled Predictor for Fusion of Accelerometer and Camera Signal to Estimate the Vibration of a Mobile Flexible Link Manipulator

    Get PDF
    This paper presents the fusion of accelerometer and camera for active vibration prediction for a mobile flexible link manipulator based on Extended Kalman filter-based modelled predictor. The tip position of the manipulator is unpredictable due to the singularity of the mobile flexible manipulator, as well as the phase lag in the control system due to the time delay between the sensor feedback and the control input. The purpose is thus to improve the prediction accuracy of the tip position. The time delayed in camera data estimates is used to correct the drifting accelerometerโ€™s signal. The dynamic model of the mobile flexible link manipulator is derived and is used to feed to the prediction stage of the Extended Kalman filter, which is used for vibration prediction. In order to investigate the efficiency of the proposed method, simulation and experimental studies are performed considering a single link flexible manipulator on a wheeled base. Experimental verifications showed that the proposed method produced good vibration prediction of the mobile manipulator compared to other model based predictor

    Neural Adaptive Backstepping Control of a Robotic Manipulator With Prescribed Performance Constraint

    Full text link
    IEEE This paper presents an adaptive neural network (NN) control of a two-degree-of-freedom manipulator driven by an electrohydraulic actuator. To restrict the system output in a prescribed performance constraint, a weighted performance function is designed to guarantee the dynamic and steady tracking errors of joint angle in a required accuracy. Then, a radial-basis-function NN is constructed to train the unknown model dynamics of a manipulator by traditional backstepping control (TBC) and obtain the preliminary estimated model, which can replace the preknown dynamics in the backstepping iteration. Furthermore, an adaptive estimation law is adopted to self-tune every trained-node weight, and the estimated model is online optimized to enhance the robustness of the NN controller. The effectiveness of the proposed control is verified by comparative simulation and experimental results with Proportional-integral-derivative and TBC methods

    ์ง€๋„ ๋ฐ ๋น„์ง€๋„ ํ•™์Šต์„ ์ด์šฉํ•œ ๋กœ๋ด‡ ๋จธ๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ ์ถฉ๋Œ ๊ฐ์ง€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2022.2. ๋ฐ•์ข…์šฐ.์‚ฌ๋žŒ๊ณผ ๊ณต์œ ๋œ ๊ตฌ์กฐํ™”๋˜์ง€ ์•Š์€ ๋™์  ํ™˜๊ฒฝ์—์„œ ์ž‘๋™ํ•˜๋Š” ํ˜‘์—… ๋กœ๋ด‡ ๋จธ๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋Š” ๋‚ ์นด๋กœ์šด ์ถฉ๋Œ(๊ฒฝ์„ฑ ์ถฉ๋Œ)์—์„œ ๋” ๊ธด ์ง€์† ์‹œ๊ฐ„์˜ ๋ฐ€๊ณ  ๋‹น๊ธฐ๋Š” ๋™์ž‘(์—ฐ์„ฑ ์ถฉ๋Œ)์— ์ด๋ฅด๊ธฐ๊นŒ์ง€์˜ ๋‹ค์–‘ํ•œ ์ถฉ๋Œ์„ ๋น ๋ฅด๊ณ  ์ •ํ™•ํ•˜๊ฒŒ ๊ฐ์ง€ํ•ด์•ผ ํ•œ๋‹ค. ๋ชจํ„ฐ ์ „๋ฅ˜ ์ธก์ •๊ฐ’์„ ์ด์šฉํ•ด ์™ธ๋ถ€ ์กฐ์ธํŠธ ํ† ํฌ๋ฅผ ์ถ”์ •ํ•˜๋Š” ๋™์—ญํ•™ ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ๊ฐ์ง€ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ, ์ •ํ™•ํ•œ ๋งˆ์ฐฐ ํŒŒ๋ผ๋ฏธํ„ฐ ๋ชจ๋ธ๋ง ๋ฐ ์‹๋ณ„๊ณผ ๊ฐ™์€ ๋ชจํ„ฐ ๋งˆ์ฐฐ์— ๋Œ€ํ•œ ์ ์ ˆํ•œ ์ฒ˜๋ฆฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ์ ์šฉํ•˜๋ฉด ๋งค์šฐ ํšจ๊ณผ์ ์ด์ง€๋งŒ, ๋™์—ญํ•™๊ณผ ๋งˆ์ฐฐ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋ชจ๋ธ๋ง ๋ฐ ์‹๋ณ„ํ•˜๊ณ  ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๊ฐ์ง€ ์ž„๊ณ„๊ฐ’์„ ์ˆ˜๋™์œผ๋กœ ์„ค์ •ํ•˜๋Š” ๋ฐ์—๋Š” ์ƒ๋‹นํ•œ ๋…ธ๋ ฅ์ด ํ•„์š”ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋Œ€๋Ÿ‰ ์ƒ์‚ฐ๋˜๋Š” ์‚ฐ์—…์šฉ ๋กœ๋ด‡์— ์ด๋ฅผ ์ ์šฉํ•˜๊ธฐ๋Š” ์–ด๋ ต๋‹ค. ๋˜ํ•œ ์ ์ ˆํ•œ ์‹๋ณ„ ํ›„์—๋„ ๋™์—ญํ•™์— ๋ฐฑ๋ž˜์‹œ, ํƒ„์„ฑ ๋“ฑ ๋ชจ๋ธ๋ง๋˜์ง€ ์•Š์€ ํšจ๊ณผ๋‚˜ ๋ถˆํ™•์‹ค์„ฑ์ด ์—ฌ์ „ํžˆ ์กด์žฌํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ˆœ์ˆ˜ ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์˜ ๊ตฌํ˜„ ์–ด๋ ค์›€์„ ํ”ผํ•˜๊ณ  ๋ถˆํ™•์‹คํ•œ ๋™์—ญํ•™์  ํšจ๊ณผ๋ฅผ ๋ณด์ƒํ•˜๋Š” ์ˆ˜๋‹จ์œผ๋กœ ๋กœ๋ด‡ ๋จธ๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋ฅผ ์œ„ํ•œ ์ด ๋„ค ๊ฐ€์ง€์˜ ํ•™์Šต ๊ธฐ๋ฐ˜ ์ถฉ๋Œ ๊ฐ์ง€ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋‘ ๊ฐœ์˜ ๋ฐฉ๋ฒ•์€ ํ•™์Šต์„ ์œ„ํ•ด ์ถฉ๋Œ ๋ฐ ๋น„์ถฉ๋Œ ๋™์ž‘ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ชจ๋‘ ํ•„์š”ํ•œ ์ง€๋„ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜(์„œํฌํŠธ ๋ฒกํ„ฐ ๋จธ์‹  ํšŒ๊ท€, ์ผ์ฐจ์› ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๊ธฐ๋ฐ˜)์„ ์‚ฌ์šฉํ•˜๋ฉฐ ๋‚˜๋จธ์ง€ ๋‘ ๊ฐœ์˜ ๋ฐฉ๋ฒ•์€ ํ•™์Šต์„ ์œ„ํ•ด ๋น„์ถฉ๋Œ ๋™์ž‘ ๋ฐ์ดํ„ฐ๋งŒ์„ ํ•„์š”๋กœ ํ•˜๋Š” ๋น„์ง€๋„ ์ด์ƒ์น˜ ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜(๋‹จ์ผ ํด๋ž˜์Šค ์„œํฌํŠธ ๋ฒกํ„ฐ ๋จธ์‹ , ์˜คํ† ์ธ์ฝ”๋” ๊ธฐ๋ฐ˜)์— ๊ธฐ๋ฐ˜ํ•œ๋‹ค. ๋กœ๋ด‡ ๋™์—ญํ•™ ๋ชจ๋ธ๊ณผ ๋ชจํ„ฐ ์ „๋ฅ˜ ์ธก์ •๊ฐ’๋งŒ์„ ํ•„์š”๋กœ ํ•˜๋ฉฐ ์ถ”๊ฐ€์ ์ธ ์™ธ๋ถ€ ์„ผ์„œ๋‚˜ ๋งˆ์ฐฐ ๋ชจ๋ธ๋ง, ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๊ฐ์ง€ ์ž„๊ณ„๊ฐ’์— ๋Œ€ํ•œ ์ˆ˜๋™ ์กฐ์ •์€ ํ•„์š”ํ•˜์ง€ ์•Š๋‹ค. ๋จผ์ € ์ง€๋„ ๋ฐ ๋น„์ง€๋„ ๊ฐ์ง€ ๋ฐฉ๋ฒ•์„ ํ•™์Šต์‹œํ‚ค๊ณ  ๊ฒ€์ฆํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋Š”, 6์ž์œ ๋„ ํ˜‘์—… ๋กœ๋ด‡ ๋จธ๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋ฅผ ์ด์šฉํ•ด ์ˆ˜์ง‘๋œ ๋กœ๋ด‡ ์ถฉ๋Œ ๋ฐ์ดํ„ฐ๋ฅผ ์„ค๋ช…ํ•œ๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ๊ณ ๋ คํ•˜๋Š” ์ถฉ๋Œ ์‹œ๋‚˜๋ฆฌ์˜ค๋Š” ๊ฒฝ์„ฑ ์ถฉ๋Œ, ์—ฐ์„ฑ ์ถฉ๋Œ, ๋น„์ถฉ๋Œ ๋™์ž‘์œผ๋กœ, ๊ฒฝ์„ฑ ๋ฐ ์—ฐ์„ฑ ์ถฉ๋Œ์€ ๋ชจ๋‘ ๋™์ผํ•˜๊ฒŒ ์ถฉ๋Œ๋กœ ๊ฐ„์ฃผํ•œ๋‹ค. ๊ฐ์ง€ ์„ฑ๋Šฅ ๊ฒ€์ฆ์„ ์œ„ํ•œ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ๋Š” ์ด 787๊ฑด์˜ ์ถฉ๋Œ๊ณผ 62.4๋ถ„์˜ ๋น„์ถฉ๋Œ ๋™์ž‘์œผ๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ์œผ๋ฉฐ, ์ด๋Š” ๋กœ๋ด‡์ด ๋žœ๋ค ์ ๋Œ€์  6๊ด€์ ˆ ๋™์ž‘์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋™์•ˆ ์ˆ˜์ง‘๋œ๋‹ค. ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ์ค‘ ๋กœ๋ด‡์˜ ๋๋‹จ์—๋Š” ๋ฏธ๋ถ€์ฐฉ, 3.3 kg, 5.0 kg์˜ ์„ธ ๊ฐ€์ง€ ์œ ํ˜•์˜ ํŽ˜์ด๋กœ๋“œ๋ฅผ ๋ถ€์ฐฉํ•œ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ์ˆ˜์ง‘๋œ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•ด ์ง€๋„ ๊ฐ์ง€ ๋ฐฉ๋ฒ•์˜ ๊ฐ์ง€ ์„ฑ๋Šฅ์„ ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆํ•œ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ์ง€๋„ ๊ฐ์ง€ ๋ฐฉ๋ฒ•์ด ๊ฐ€๋ฒผ์šด ๋„คํŠธ์›Œํฌ๋ฅผ ์ด์šฉํ•ด ๊ด‘๋ฒ”์œ„ํ•œ ๊ฒฝ์„ฑ ๋ฐ ์—ฐ์„ฑ ์ถฉ๋Œ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ •ํ™•ํ•˜๊ฒŒ ๊ฐ์ง€ํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ๋ถˆํ™•์‹ค์„ฑ๊ณผ ์ธก์ • ๋…ธ์ด์ฆˆ, ๋ฐฑ๋ž˜์‹œ, ๋ณ€ํ˜• ๋“ฑ ๋ชจ๋ธ๋ง๋˜์ง€ ์•Š์€ ํšจ๊ณผ๊นŒ์ง€ ๋ณด์ƒ๋จ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ์„œํฌํŠธ ๋ฒกํ„ฐ ๋จธ์‹  ํšŒ๊ท€ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์€ ํ•˜๋‚˜์˜ ๊ฐ์ง€ ์ž„๊ณ„๊ฐ’์— ๋Œ€ํ•œ ์กฐ์ •๋งŒ ํ•„์š”ํ•˜๋ฉฐ ์ผ์ฐจ์› ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์€ ํ•˜๋‚˜์˜ ์•„์›ƒํ’‹ ํ•„ํ„ฐ ํŒŒ๋ผ๋ฏธํ„ฐ์— ๋Œ€ํ•œ ์กฐ์ •๋งŒ ํ•„์š”ํ•œ๋ฐ, ๋‘ ๋ฐฉ๋ฒ• ๋ชจ๋‘ ์ง๊ด€์ ์ธ ๊ฐ๋„ ์กฐ์ •์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋‚˜์•„๊ฐ€ ์ผ๋ จ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์‹คํ—˜์„ ํ†ตํ•ด ์ง€๋„ ๊ฐ์ง€ ๋ฐฉ๋ฒ•์˜ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋™์ผํ•œ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ๋น„์ง€๋„ ๊ฐ์ง€ ๋ฐฉ๋ฒ•์˜ ๊ฐ์ง€ ์„ฑ๋Šฅ๊ณผ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ ๋˜ํ•œ ๊ฒ€์ฆํ•œ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ๋น„์ง€๋„ ๊ฐ์ง€ ๋ฐฉ๋ฒ• ๋˜ํ•œ ๊ฐ€๋ฒผ์šด ๊ณ„์‚ฐ๊ณผ ํ•˜๋‚˜์˜ ๊ฐ์ง€ ์ž„๊ณ„๊ฐ’์— ๋Œ€ํ•œ ์กฐ์ •๋งŒ์œผ๋กœ ๋‹ค์–‘ํ•œ ๊ฒฝ์„ฑ ๋ฐ ์—ฐ์„ฑ ์ถฉ๋Œ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ฐ•์ธํ•˜๊ฒŒ ๊ฐ์ง€ํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ๋ง๋˜์ง€ ์•Š์€ ๋งˆ์ฐฐ์„ ํฌํ•จํ•œ ๋ถˆํ™•์‹คํ•œ ๋™์—ญํ•™์  ํšจ๊ณผ๋ฅผ ๋น„์ง€๋„ ํ•™์Šต์œผ๋กœ๋„ ๋ณด์ƒํ•  ์ˆ˜ ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ง€๋„ ๊ฐ์ง€ ๋ฐฉ๋ฒ•์ด ๋” ๋‚˜์€ ๊ฐ์ง€ ์„ฑ๋Šฅ์„ ๋ณด์ด์ง€๋งŒ, ๋น„์ง€๋„ ๊ฐ์ง€ ๋ฐฉ๋ฒ•์€ ํ•™์Šต์„ ์œ„ํ•ด ๋น„์ถฉ๋Œ ๋™์ž‘ ๋ฐ์ดํ„ฐ๋งŒ์„ ํ•„์š”๋กœ ํ•˜๋ฉฐ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋“  ์œ ํ˜•์˜ ์ถฉ๋Œ์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ํ•„์š”๋กœ ํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ๋Œ€๋Ÿ‰ ์ƒ์‚ฐ๋˜๋Š” ์‚ฐ์—…์šฉ ๋กœ๋ด‡์— ๋” ์ ํ•ฉํ•˜๋‹ค.Collaborative robot manipulators operating in dynamic and unstructured environments shared with humans require fast and accurate detection of collisions, which can range from sharp impacts (hard collisions) to pulling and pushing motions of longer duration (soft collisions). When using dynamics model-based detection methods that estimate the external joint torque with motor current measurements, proper treatment for friction in the motors is required, such as accurate modeling and identification of friction parameters. Although highly effective when done correctly, modeling and identifying the dynamics and friction parameters, and manually setting multiple detection thresholds require considerable effort, making them difficult to be replicated for mass-produced industrial robots. There may also still exist unmodeled effects or uncertainties in the dynamics even after proper identification, e.g., backlash, elasticity. This dissertation presents a total of four learning-based collision detection methods for robot manipulators as a means of sidestepping some of the implementation difficulties of pure model-based methods and compensating for uncertain dynamic effects. Two methods use supervised learning algorithms โ€“ support vector machine regression and a one-dimensional convolutional neural network-based โ€“ that require both the collision and collision-free motion data for training. The other two methods are based on unsupervised anomaly detection algorithms โ€“ a one-class support vector machine and an autoencoder-based โ€“ that require only the collision-free motion data for training. Only the motor current measurements together with a robot dynamics model are required while no additional external sensors, friction modeling, or manual tuning of multiple detection thresholds are needed. We first describe the robot collision dataset collected with a six-dof collaborative robot manipulator, which is used for training and validating our supervised and unsupervised detection methods. The collision scenarios we consider are hard collisions, soft collisions, and collision-free, where both hard and soft collisions are treated in the same manner as just collisions. The test dataset for detection performance verification includes a total of 787 collisions and 62.4 minutes of collision-free motions, all collected while the robot is executing random point-to-point six-joint motions. During data collection, three types of payloads are attached to the end-effector: no payload, 3.3 kg payload, and 5.0 kg payload. Then the detection performance of our supervised detection methods is experimentally verified with the collected test dataset. Results demonstrate that our supervised detection methods can accurately detect a wide range of hard and soft collisions in real-time using a light network, compensating for uncertainties in the model parameters as well as unmodeled effects like friction, measurement noise, backlash, and deformations. Moreover, the SVMR-based method requires only one constant detection threshold to be tuned while the 1-D CNN-based method requires only one output filter parameter to be tuned, both of which allow intuitive sensitivity tuning. Furthermore, the generalization capability of our supervised detection methods is experimentally verified with a set of simulation experiments. Finally, our unsupervised detection methods are also validated for the same test dataset; the detection performance and the generalization capability are verified. The experimental results show that our unsupervised detection methods are also able to robustly detect a variety of hard and soft collisions in real-time with very light computation and with only one constant detection threshold required to be tuned, validating that uncertain dynamic effects including the unmodeled friction can be successfully compensated also with unsupervised learning. Although our supervised detection methods show better detection performance, our unsupervised detection methods are more practical for mass-produced industrial robots since they require only the data for collision-free motions for training, and the knowledge of every possible type of collision that can occur is not required.1 Introduction 1 1.1 Model-Free Methods 2 1.2 Model-Based Methods 2 1.3 Learning-Based Methods 4 1.3.1 Using Supervised Learning Algorithms 5 1.3.2 Using Unsupervised Learning Algorithms 6 1.4 Contributions of This Dissertation 7 1.4.1 Supervised Learning-Based Model-Compensating Detection 7 1.4.2 Unsupervised Learning-Based Model-Compensating Detection 8 1.4.3 Comparison with Existing Detection Methods 9 1.5 Organization of This Dissertation 14 2 Preliminaries 17 2.1 Introduction 17 2.2 Robot Dynamics 17 2.3 Momentum Observer-Based Collision Detection 19 2.4 Supervised Learning Algorithms 21 2.4.1 Support Vector Machine Regression 21 2.4.2 One-Dimensional Convolutional Neural Network 23 2.5 Unsupervised Anomaly Detection 25 2.6 One-Class Support Vector Machine 26 2.7 Autoencoder-Based Anomaly Detection 28 2.7.1 Autoencoder Network Architecture and Training 28 2.7.2 Anomaly Detection Using Autoencoders 29 3 Robot Collision Data 31 3.1 Introduction 31 3.2 True Collision Index Labeling 31 3.3 Collision Scenarios 35 3.4 Monitoring Signal 36 3.5 Signal Normalization and Sampling 37 3.6 Test Data for Detection Performance Verification 39 4 Supervised Learning-Based Model-Compensating Detection 43 4.1 Introduction 43 4.2 SVMR-Based Collision Detection 44 4.2.1 Input Feature Vector Design 44 4.2.2 SVMR Training 45 4.2.3 Collision Detection Sensitivity Adjustment 46 4.3 1-D CNN-Based Collision Detection 50 4.3.1 Network Input Design 50 4.3.2 Network Architecture and Training 50 4.3.3 An Output Filtering Method to Reduce False Alarms 53 4.4 Collision Detection Performance Criteria 54 4.4.1 Area Under the Precision-Recall Curve (PRAUC) 54 4.4.2 Detection Delay and Number of Detection Failures 54 4.5 Collision Detection Performance Analysis 56 4.5.1 Global Performance with Varying Thresholds 56 4.5.2 Detection Delay and Number of Detection Failures 57 4.5.3 Real-Time Inference 60 4.6 Generalization Capability Analysis 60 4.6.1 Generalization to Small Perturbations 60 4.6.2 Generalization to an Unseen Payload 62 5 Unsupervised Learning-Based Model-Compensating Detection 67 5.1 Introduction 67 5.2 OC-SVM-Based Collision Detection 68 5.2.1 Input Feature Vector 68 5.2.2 OC-SVM Training 70 5.2.3 Collision Detection with the Trained OC-SVM 70 5.3 Autoencoder-Based Collision Detection 70 5.3.1 Network Input and Output 71 5.3.2 Network Architecture and Training 71 5.3.3 Collision Detection with the Trained Autoencoder 72 5.4 Collision Detection Performance Analysis 74 5.4.1 Global Performance with Varying Thresholds 75 5.4.2 Detection Delay and Number of Detection Failures 75 5.4.3 Comparison with Supervised Learning-Based Methods 80 5.4.4 Real-Time Inference 83 5.5 Generalization Capability Analysis 83 5.5.1 Generalization to Small Perturbations 84 5.5.2 Generalization to an Unseen Payload 85 6 Conclusion 89 6.1 Summary and Discussion 89 6.2 Future Work 93 A Appendix 95 A.1 SVM-Based Classification of Detected Collisions 95 A.2 Direct Estimation-Based Detection Methods 97 A.3 Model-Independent Supervised Detection Methods 101 A.4 Generalization to Large Changes in the Dynamics Model 102 Bibliography 106 Abstract 112๋ฐ•

    Proceedings of the NASA Conference on Space Telerobotics, volume 4

    Get PDF
    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotic technology to the space systems planned for the 1990's and beyond. Volume 4 contains papers related to the following subject areas: manipulator control; telemanipulation; flight experiments (systems and simulators); sensor-based planning; robot kinematics, dynamics, and control; robot task planning and assembly; and research activities at the NASA Langley Research Center

    Experimental Evaluation of the Projection-based Force Reflection Algorithms for Haptic Interaction with Virtual Environment

    Get PDF
    Haptic interaction with virtual environments is currently a major and growing area of research with a number of emerging applications, particularly in the field of robotics. Digital implementation of the virtual environments, however, introduces errors which may result in instability of the haptic displays. This thesis deals with experimental investigation of the Projection-Based Force Reflection Algorithms (PFRAs) for haptic interaction with virtual environments, focusing on their performance in terms of stability and transparency. Experiments were performed to compare the PFRA in terms of performance for both non-delayed and delayed haptic interactions with more conventional haptic rendering methods, such as the Virtual Coupling (VC) and Wave Variables (WV). The results demonstrated that the PFRA is more stable, guarantees higher levels of transparency, and is less sensitive to decrease in update rates
    • โ€ฆ
    corecore