7,446 research outputs found

    Contact-Aided Invariant Extended Kalman Filtering for Legged Robot State Estimation

    Full text link
    This paper derives a contact-aided inertial navigation observer for a 3D bipedal robot using the theory of invariant observer design. Aided inertial navigation is fundamentally a nonlinear observer design problem; thus, current solutions are based on approximations of the system dynamics, such as an Extended Kalman Filter (EKF), which uses a system's Jacobian linearization along the current best estimate of its trajectory. On the basis of the theory of invariant observer design by Barrau and Bonnabel, and in particular, the Invariant EKF (InEKF), we show that the error dynamics of the point contact-inertial system follows a log-linear autonomous differential equation; hence, the observable state variables can be rendered convergent with a domain of attraction that is independent of the system's trajectory. Due to the log-linear form of the error dynamics, it is not necessary to perform a nonlinear observability analysis to show that when using an Inertial Measurement Unit (IMU) and contact sensors, the absolute position of the robot and a rotation about the gravity vector (yaw) are unobservable. We further augment the state of the developed InEKF with IMU biases, as the online estimation of these parameters has a crucial impact on system performance. We evaluate the convergence of the proposed system with the commonly used quaternion-based EKF observer using a Monte-Carlo simulation. In addition, our experimental evaluation using a Cassie-series bipedal robot shows that the contact-aided InEKF provides better performance in comparison with the quaternion-based EKF as a result of exploiting symmetries present in the system dynamics.Comment: Published in the proceedings of Robotics: Science and Systems 201

    A detectability criterion and data assimilation for non-linear differential equations

    Full text link
    In this paper we propose a new sequential data assimilation method for non-linear ordinary differential equations with compact state space. The method is designed so that the Lyapunov exponents of the corresponding estimation error dynamics are negative, i.e. the estimation error decays exponentially fast. The latter is shown to be the case for generic regular flow maps if and only if the observation matrix H satisfies detectability conditions: the rank of H must be at least as great as the number of nonnegative Lyapunov exponents of the underlying attractor. Numerical experiments illustrate the exponential convergence of the method and the sharpness of the theory for the case of Lorenz96 and Burgers equations with incomplete and noisy observations

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
    • …
    corecore