155,062 research outputs found

    Nondeterministic hybrid dynamical systems

    Get PDF
    This thesis is concerned with the analysis, control and identification of hybrid dynamical systems. The main focus is on a particular class of hybrid systems consisting of linear subsystems. The discrete dynamic, i.e., the change between subsystems, is unknown or nondeterministic and cannot be influenced, i.e. controlled, directly. However changes in the discrete dynamic can be detected immediately, such that the current dynamic (subsystem) is known. In order to motivate the study of hybrid systems and show the merits of hybrid control theory, an example is given. It is shown that real world systems like Anti Locking Brakes (ABS) are naturally modelled by such a class of linear hybrids systems. It is shown that purely continuous feedback is not suitable since it cannot achieve maximum braking performance. A hybrid control strategy, which overcomes this problem, is presented. For this class of linear hybrid system with unknown discrete dynamic, a framework for robust control is established. The analysis methodology developed gives a robustness radius such that the stability under parameter variations can be analysed. The controller synthesis procedure is illustrated in a practical example where the control for an active suspension of a car is designed. Optimal control for this class of hybrid system is introduced. It is shows how a control law is obtained which minimises a quadratic performance index. The synthesis procedure is stated in terms of a convex optimisation problem using linear matrix inequalities (LMI). The solution of the LMI not only returns the controller but also the performance bound. Since the proposed controller structures require knowledge of the continuous state, an observer design is proposed. It is shown that the estimation error converges quadratically while minimising the covariance of the estimation error. This is similar to the Kalman filter for discrete or continuous time systems. Further, we show that the synthesis of the observer can be cast into an LMI, which conveniently solves the synthesis problem

    On Observer-Based Control of Nonlinear Systems

    Get PDF
    Filtering and reconstruction of signals play a fundamental role in modern signal processing, telecommunications, and control theory and are used in numerous applications. The feedback principle is an important concept in control theory. Many different control strategies are based on the assumption that all internal states of the control object are available for feedback. In most cases, however, only a few of the states or some functions of the states can be measured. This circumstance raises the need for techniques, which makes it possible not only to estimate states, but also to derive control laws that guarantee stability when using the estimated states instead of the true ones. For linear systems, the separation principle assures stability for the use of converging state estimates in a stabilizing state feedback control law. In general, however, the combination of separately designed state observers and state feedback controllers does not preserve performance, robustness, or even stability of each of the separate designs. In this thesis, the problems of observer design and observer-based control for nonlinear systems are addressed. The deterministic continuous-time systems have been in focus. Stability analysis related to the Positive Real Lemma with relevance for output feedback control is presented. Separation results for a class of nonholonomic nonlinear systems, where the combination of independently designed observers and state-feedback controllers assures stability in the output tracking problem are shown. In addition, a generalization to the observer-backstepping method where the controller is designed with respect to estimated states, taking into account the effects of the estimation errors, is presented. Velocity observers with application to ship dynamics and mechanical manipulators are also presented

    Discrete-time neural network based state observer with neural network based control formulation for a class of systems with unmatched uncertainties

    Get PDF
    An observer is a dynamic system that estimates the state variables of another system using noisy measurements, either to estimate unmeasurable states, or to improve the accuracy of the state measurements. The Modified State Observer (MSO) is a technique that uses a standard observer structure modified to include a neural network to estimate system states as well as system uncertainty. It has been used in orbit uncertainty estimation and atmospheric reentry uncertainty estimation problems to correctly estimate unmodeled system dynamics. A form of the MSO has been used to control a nonlinear electrohydraulic system with parameter uncertainty using a simplified linear model. In this paper an extension of the MSO into discrete-time is developed using Lyapunov stability theory. Discrete-time systems are found in all digital hardware implementations, such as that found in a Martian rover, a quadcopter UAV, or digital flight control systems, and have the added benefit of reduced computation time compared to continuous systems. The derived adaptive update law guarantees stability of the error dynamics and boundedness of the neural network weights. To prove the validity of the discrete-time MSO (DMSO) simulation studies are performed using a two wheeled inverted pendulum (TWIP) robot, an unstable nonlinear system with unmatched uncertainties. Using a linear model with parameter uncertainties, the DMSO is shown to correctly estimate the state of the system as well as the system uncertainty, providing state estimates orders of magnitude more accurate, and in periods of time up to 10 times faster than the Discrete Kalman Filter. The DMSO is implemented on an actual TWIP robot to further validate the performance and demonstrate the applicability to discrete-time systems found in many aerospace applications. Additionally, a new form of neural network control is developed to compensate for the unmatched uncertainties that exist in the TWIP system using a state variable as a virtual control input. It is shown that in all cases the neural network based control assists with the controller effectiveness, resulting in the most effective controller, performing on average 53.1% better than LQR control alone --Abstract, page iii

    The Application of State Observer Techniques to Problems of System Design and Integrity in Helicopter Flight Control

    Get PDF
    Automatic flight control systems of modern aircraft, whether fixed wing or rotorcraft, have become increasingly complex and often involve the use of control activity which goes beyond the levels normally associated with human pilot operation. The sophisticated control laws employed frequently utilise the complete state vector, however, in practice not every state variable is available, either owing to the failure of its sensor or because it is impracticable to measure. The most feasible solution to the problem is therefore to use an estimate of the state vector produced from an observer. This thesis is concerned with the application of deterministic, continuous-time, linear, time-invariant system theory in the design of 'Luenberger' state observers for state estimation in the flight control systems of the single rotor helicopter. Observer design and system simulation were facilitated by using a complicated mathematical model of the helicopter. This model, which was provided by the Royal Aerospace Establishment, Bedford, is examined in detail and its limitations are discussed. Observer design methods are reviewed and two approaches, a method proposed by Gopinath and an observable canonical form method, are examined in detail. Due to numerical problems the Gopinath method is shown to be unsuitable, however it is demonstrated that the observable canonical form method is capable of producing accurate designs. Details of the software implementation of the canonical form technique are given and the results obtained and problems encountered, are analysed. Using this software, full and reduced order observers are designed for both eighth and fourteenth order system models. The performance of these observers are thoroughly assessed and it is shown that good estimates can be produced if the system states are 'clean', but that noise corrupted states result in poor estimates. To solve this problem a new form of observer --- the twin observer --- is introduced and it is demonstrated that with a precise model of the system, the twin observer can produce accurate, relatively noise free estimates of the system state. A review of instrument fault detection techniques is given and an observer based scheme, known as the Dedicated Observer Scheme, is selected for analysis with the twin observer and a fourth order, longitudinal system model. The advantages and disadvantages of this scheme are examined and possible solutions to some of the problems are proposed

    Robust Predictive Extended State Observer for a Class of Nonlinear Systems with Time-Varying Input Delay

    Full text link
    [EN] This paper deals with asymptotic stabilisation of a class of nonlinear input-delayed systems via dynamic output feedback in the presence of disturbances. The proposed strategy has the structure of an observer-based control law, in which the observer estimates and predicts both the plant state and the external disturbance. A nominal delay value is assumed to be known and stability conditions in terms of linear matrix inequalities are derived for fast-varying delay uncertainties. Asymptotic stability is achieved if the disturbance or the time delay is constant. The controller design problem is also addressed and a numerical example with an unstable system is provided to illustrate the usefulness of the proposed strategy.This work was partially supported by: Ministerio de EconomĂ­a y Competitividad, Spain (TIN2017-86520-C3-1-R); Universitat PolitĂšcnica de ValĂšncia (FPI-UPV 2014 PhD Grant); and Israel Science Foundation (Grant No. 1128/14).Sanz Diaz, R.; GarcĂ­a Gil, PJ.; Fridman, E.; Albertos PĂ©rez, P. (2020). Robust Predictive Extended State Observer for a Class of Nonlinear Systems with Time-Varying Input Delay. International Journal of Control. 93(2):217-225. https://doi.org/10.1080/00207179.2018.1562204S217225932Ahmed-Ali, T., Cherrier, E., & Lamnabhi-Lagarrigue, F. (2012). Cascade High Gain Predictors for a Class of Nonlinear Systems. IEEE Transactions on Automatic Control, 57(1), 221-226. doi:10.1109/tac.2011.2161795Artstein, Z. (1982). Linear systems with delayed controls: A reduction. IEEE Transactions on Automatic Control, 27(4), 869-879. doi:10.1109/tac.1982.1103023Basturk, H. I. (2017). Cancellation of unmatched biased sinusoidal disturbances for unknown LTI systems in the presence of state delay. Automatica, 76, 169-176. doi:10.1016/j.automatica.2016.10.006Basturk, H. I., & Krstic, M. (2015). Adaptive sinusoidal disturbance cancellation for unknown LTI systems despite input delay. Automatica, 58, 131-138. doi:10.1016/j.automatica.2015.05.013Bekiaris-Liberis, N., & Krstic, M. (2011). Compensation of Time-Varying Input and State Delays for Nonlinear Systems. Journal of Dynamic Systems, Measurement, and Control, 134(1). doi:10.1115/1.4005278Besançon, G., Georges, D. & Benayache, Z. (2007). Asymptotic state prediction for continuous-time systems with delayed input and application to control. 2007 European control conference (ECC) (pp. 1786–1791).Engelborghs, K., Dambrine, M., & Roose, D. (2001). Limitations of a class of stabilization methods for delay systems. IEEE Transactions on Automatic Control, 46(2), 336-339. doi:10.1109/9.905705Fridman, E. (2001). New Lyapunov–Krasovskii functionals for stability of linear retarded and neutral type systems. Systems & Control Letters, 43(4), 309-319. doi:10.1016/s0167-6911(01)00114-1Fridman, E. (2014). Introduction to Time-Delay Systems. Systems & Control: Foundations & Applications. doi:10.1007/978-3-319-09393-2Fridman, E. (2014). Tutorial on Lyapunov-based methods for time-delay systems. European Journal of Control, 20(6), 271-283. doi:10.1016/j.ejcon.2014.10.001Furtat, I., Fridman, E., & Fradkov, A. (2018). Disturbance Compensation With Finite Spectrum Assignment for Plants With Input Delay. IEEE Transactions on Automatic Control, 63(1), 298-305. doi:10.1109/tac.2017.2732279Germani, A., Manes, C., & Pepe, P. (2002). A new approach to state observation of nonlinear systems with delayed output. IEEE Transactions on Automatic Control, 47(1), 96-101. doi:10.1109/9.981726Guo, L., & Chen, W.-H. (2005). Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. International Journal of Robust and Nonlinear Control, 15(3), 109-125. doi:10.1002/rnc.978Karafyllis, I., & Krstic, M. (2017). Predictor Feedback for Delay Systems: Implementations and Approximations. Systems & Control: Foundations & Applications. doi:10.1007/978-3-319-42378-4Krstic, M. (2008). Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch. Automatica, 44(11), 2930-2935. doi:10.1016/j.automatica.2008.04.010LĂ©chappĂ©, V., Moulay, E., Plestan, F., Glumineau, A., & Chriette, A. (2015). New predictive scheme for the control of LTI systems with input delay and unknown disturbances. Automatica, 52, 179-184. doi:10.1016/j.automatica.2014.11.003LĂ©chappĂ©, V., Moulay, E. & Plestan, F. (2016). Dynamic observation-prediction for LTI systems with a time-varying delay in the input. 2016 IEEE 55th conference on decision and control (CDC) (pp. 2302–2307).Manitius, A., & Olbrot, A. (1979). Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control, 24(4), 541-552. doi:10.1109/tac.1979.1102124Mazenc, F. & Malisoff, M. (2016). New prediction approach for stabilizing time-varying systems under time-varying input delay. 2016 IEEE 55th conference on decision and control (CDC) (pp. 3178–3182).Mondie, S., & Michiels, W. (2003). Finite spectrum assignment of unstable time-delay systems with a safe implementation. IEEE Transactions on Automatic Control, 48(12), 2207-2212. doi:10.1109/tac.2003.820147Najafi, M., Hosseinnia, S., Sheikholeslam, F., & Karimadini, M. (2013). Closed-loop control of dead time systems via sequential sub-predictors. International Journal of Control, 86(4), 599-609. doi:10.1080/00207179.2012.751627Najafi, M., Sheikholeslam, F., Hosseinnia, S., & Wang, Q.-G. (2014). Robust H ∞ control of single input-delay systems based on sequential sub-predictors. IET Control Theory & Applications, 8(13), 1175-1184. doi:10.1049/iet-cta.2012.1004Sanz, R., Garcia, P., & Albertos, P. (2016). Enhanced disturbance rejection for a predictor-based control of LTI systems with input delay. Automatica, 72, 205-208. doi:10.1016/j.automatica.2016.05.019Sanz, R., GarcĂ­a, P., & Albertos, P. (2018). A generalized smith predictor for unstable time-delay SISO systems. ISA Transactions, 72, 197-204. doi:10.1016/j.isatra.2017.09.020Sanz, R., GarcĂ­a, P., Fridman, E. & Albertos, P. (2017). A predictive extended state observer for a class of nonlinear systems with input delay subject to external disturbances. 2017 IEEE 56th annual conference on decision and control (CDC) (pp. 4345–4350).Sanz, R., Garcia, P., Fridman, E., & Albertos, P. (2018). Rejection of mismatched disturbances for systems with input delay via a predictive extended state observer. International Journal of Robust and Nonlinear Control, 28(6), 2457-2467. doi:10.1002/rnc.4027Shustin, E., & Fridman, E. (2007). On delay-derivative-dependent stability of systems with fast-varying delays. Automatica, 43(9), 1649-1655. doi:10.1016/j.automatica.2007.02.009Suplin, V., Fridman, E., & Shaked, U. (2007). Sampled-data H∞ control and filtering: Nonuniform uncertain sampling. Automatica, 43(6), 1072-1083. doi:10.1016/j.automatica.2006.11.024Yao, J., Jiao, Z., & Ma, D. (2014). RISE-Based Precision Motion Control of DC Motors With Continuous Friction Compensation. IEEE Transactions on Industrial Electronics, 61(12), 7067-7075. doi:10.1109/tie.2014.2321344Zhong, Q.-C. (2004). On Distributed Delay in Linear Control Laws—Part I: Discrete-Delay Implementations. IEEE Transactions on Automatic Control, 49(11), 2074-2080. doi:10.1109/tac.2004.83753
    • 

    corecore