11,551 research outputs found

    Observer-Based Robust Tracking Control for a Class of Switched Nonlinear Cascade Systems

    Get PDF
    This paper is devoted to robust output feedback tracking control design for a class of switched nonlinear cascade systems. The main goal is to ensure the global input-to-state stable (ISS) property of the tracking error nonlinear dynamics with respect to the unknown structural system uncertainties and external disturbances. First, a nonlinear observer is constructed through state transformation to reconstruct the unavailable states, where only one parameter should be determined. Then, by virtue of the nonlinear sliding mode control (SMC), a discontinuous nonlinear output feedback controller is designed using a backstepping like design procedure to ensure the ISS property. Finally, an example is provided to show the effectiveness of the proposed approach

    H ∞  sliding mode observer design for a class of nonlinear discrete time-delay systems: A delay-fractioning approach

    Get PDF
    Copyright @ 2012 John Wiley & SonsIn this paper, the H ∞  sliding mode observer (SMO) design problem is investigated for a class of nonlinear discrete time-delay systems. The nonlinear descriptions quantify the maximum possible derivations from a linear model, and the system states are allowed to be immeasurable. Attention is focused on the design of a discrete-time SMO such that the asymptotic stability as well as the H ∞  performance requirement of the error dynamics can be guaranteed in the presence of nonlinearities, time delay and external disturbances. Firstly, a discrete-time discontinuous switched term is proposed to make sure that the reaching condition holds. Then, by constructing a new Lyapunov–Krasovskii functional based on the idea of ‘delay fractioning’ and by introducing some appropriate free-weighting matrices, a sufficient condition is established to guarantee the desired performance of the error dynamics in the specified sliding mode surface by solving a minimization problem. Finally, an illustrative example is given to show the effectiveness of the designed SMO design scheme

    Contraction analysis of switched systems with application to control and observer design

    Get PDF
    In many control problems, such as tracking and regulation, observer design, coordination and synchronization, it is more natural to describe the stability problem in terms of the asymptotic convergence of trajectories with respect to one another, a property known as incremental stability. Contraction analysis exploits the stability properties of the linearized dynamics to infer incremental stability properties of nonlinear systems. However, results available in the literature do not fully encompass the case of switched dynamical systems. To overcome these limitations, in this thesis we present a novel extension of contraction analysis to such systems based on matrix measures and differential Lyapunov functions. The analysis is conducted first regularizing the system, i.e. approximating it with a smooth dynamical system, and then applying standard contraction results. Based on our new conditions, we present design procedures to synthesize switching control inputs to incrementally stabilize a class of smooth nonlinear systems, and to design state observers for a large class of nonlinear switched systems including those exhibiting sliding motion. In addition, as further work, we present new conditions for the onset of synchronization and consensus patterns in complex networks. Specifically, we show that if network nodes exhibit some symmetry and if the network topology is properly balanced by an appropriate designed communication protocol, then symmetry of the nodes can be exploited to achieve a synchronization/consensus pattern

    Switched gain differentiator with fixed-time convergence

    Get PDF
    International audienceAcceleration of estimation for a class of nonlinear systems in the output canonical form is considered in this work. The acceleration is achieved by a supervisory algorithm design that switches among different values of observer gain. The presence of bounded matched disturbances, Lipschitz uncertainties and measurement noises is taken into account. The proposed switched-gain observer guarantees global uniform time of convergence of the estimation error to the origin in the noise-free case. In the presence of noise our commutation strategy pursuits the goals of overshoot reducing for the initial phase, acceleration of convergence and improvement of asymptotic precision of estimation. Efficacy of the proposed switching-gain observer is illustrated by numerical comparison with a sliding mode and linear high-gain observers

    Observer design for piecewise smooth and switched systems via contraction theory

    Full text link
    The aim of this paper is to present the application of an approach to study contraction theory recently developed for piecewise smooth and switched systems. The approach that can be used to analyze incremental stability properties of so-called Filippov systems (or variable structure systems) is based on the use of regularization, a procedure to make the vector field of interest differentiable before analyzing its properties. We show that by using this extension of contraction theory to nondifferentiable vector fields, it is possible to design observers for a large class of piecewise smooth systems using not only Euclidean norms, as also done in previous literature, but also non-Euclidean norms. This allows greater flexibility in the design and encompasses the case of both piecewise-linear and piecewise-smooth (nonlinear) systems. The theoretical methodology is illustrated via a set of representative examples.Comment: Preprint accepted to IFAC World Congress 201

    New advances in H∞ control and filtering for nonlinear systems

    Get PDF
    The main objective of this special issue is to summarise recent advances in H∞ control and filtering for nonlinear systems, including time-delay, hybrid and stochastic systems. The published papers provide new ideas and approaches, clearly indicating the advances made in problem statements, methodologies or applications with respect to the existing results. The special issue also includes papers focusing on advanced and non-traditional methods and presenting considerable novelties in theoretical background or experimental setup. Some papers present applications to newly emerging fields, such as network-based control and estimation

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Robust output stabilization: improving performance via supervisory control

    Full text link
    We analyze robust stability, in an input-output sense, of switched stable systems. The primary goal (and contribution) of this paper is to design switching strategies to guarantee that input-output stable systems remain so under switching. We propose two types of {\em supervisors}: dwell-time and hysteresis based. While our results are stated as tools of analysis they serve a clear purpose in design: to improve performance. In that respect, we illustrate the utility of our findings by concisely addressing a problem of observer design for Lur'e-type systems; in particular, we design a hybrid observer that ensures ``fast'' convergence with ``low'' overshoots. As a second application of our main results we use hybrid control in the context of synchronization of chaotic oscillators with the goal of reducing control effort; an originality of the hybrid control in this context with respect to other contributions in the area is that it exploits the structure and chaotic behavior (boundedness of solutions) of Lorenz oscillators.Comment: Short version submitted to IEEE TA
    corecore