2,979 research outputs found

    Liquid Transport Pipeline Monitoring Architecture Based on State Estimators for Leak Detection and Location

    Get PDF
    This research presents the implementation of optimization algorithms to build auxiliary signals that can be injected as inputs into a pipeline in order to estimate —by using state observers—physical parameters such as the friction or the velocity of sound in the fluid. For the state estimator design, the parameters to be estimated are incorporated into the state vector of a Liénard-type model of a pipeline such that the observer is constructed from the augmented model. A prescribed observability degree of the augmented model is guaranteed by optimization algorithms by building an optimal input for the identification. The minimization of the input energy is used to define the optimality of the input, whereas the observability Gramian is used to verify the observability. Besides optimization algorithms, a novel method, based on a Liénard-type model, to diagnose single and sequential leaks in pipelines is proposed. In this case, the Liénard-type model that describes the fluid behavior in a pipeline is given only in terms of the flow rate. This method was conceived to be applied in pipelines solely instrumented with flowmeters or in conjunction with pressure sensors that are temporarily out of service. The design approach starts with the discretization of the Liénard-type model spatial domain into a prescribed number of sections. Such discretization is performed to obtain a lumped model capable of providing a solution (an internal flow rate) for every section. From this lumped model, a set of algebraic equations (known as residuals) are deduced as the difference between the internal discrete flows and the nominal flow (the mean of the flow rate calculated prior to the leak). The residual closest to zero will indicate the section where a leak is occurring. The main contribution of our method is that it only requires flow measurements at the pipeline ends, which leads to cost reductions. Some simulation-based tes

    Vibration Control of Wave Energy Point Absorbers for Optimal Power Take-off

    Get PDF

    The Laminar Organization of Visual Cortex: A Unified View of Development, Learning, and Grouping

    Full text link
    Why are all sensory and cognitive neocortex organized into layered circuits? How do these layers organize circuits that form functional columns in cortical maps? How do bottom-up, top-down, and horizontal interactions within the cortical layers generate adaptive behaviors. This chapter summarizes an evolving neural model which suggests how these interactions help the visual cortex to realize: (1) the binding process whereby cortex groups distributed data into coherent object representations; (2) the attentional process whereby cortex selectively processes important events; and (3) the developmental and learning processes whereby cortex shapes its circuits to match environmental constraints. It is suggested that the mechanisms which achieve property (3) imply properties of (I) and (2). New computational ideas about feedback systems suggest how neocortex develops and learns in a stable way, and why top-down attention requires converging bottom-up inputs to fully activate cortical cells, whereas perceptual groupings do not.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-97-20333); Office of Naval Research (N00014-95-1-0657

    Photonic crystal slabs for low-cost biosensors

    Get PDF
    Biosensors are devices that utilize biological recognition elements to selectively detect and analyze specific biological and chemical analyte substances. In this work a technology platform for label-free optical biosensors based on surface-functionalized photonic crystal slabs is proposed. Using this technology platform, low-cost solutions for three biotechnical questions are presented

    Propagation Of Sound In The Vicinity Of Rigid Porous Interfaces

    Get PDF
    Propagation of sound in the vicinity of rigid porous interfaces is investigated systematically to facilitate the acoustical characterization of sound absorption materials for noise reduction applications. Various rigid porous interfaces are considered: (1) a semi-infinite porous layer; (2) a porous hard-backed surface; and (3) a porous impedance-backed layer. A closed-form solution and numerical methods are derived with respect to each rigid porous interface condition. A modified saddle-point method is exploited to investigate the sound field emanating from a monopole source above and below a rigid porous interface. The solutions can be expressed in a form that resembles the classical Weyl-Van der Pol formula. A heuristic method is then proposed to remove the singularity within the asymptotic solution via application of the double saddle-point method. Its relative simplicity and accuracy demonstrates the advantage of the double saddle-point method whenever the approximation is valid. Following this, the sound field within a hard-backed rigid porous medium due to an airborne source is examined. The accuracy of the proposed asymptotic solutions has been confirmed by comparison with benchmark numerical solutions and through indoor sound propagation experiments. Measurement data and theoretical predictions suggest that when the receiver is positioned near the top surface of the hard-backed layer, the ground reflection of the refracted wave contributes greatly to the total sound field. Taking into account source characteristics, an asymptotic formula is derived for predicting the sound field from a dipole source above and below an extended reaction ground. The directional effect of the dipole source on each term within the asymptotic solutions is interpreted. Further analysis shows that an accurate asymptotic solution can provide a good starter field for the Parabolic Equation--Finite Element Method (PE/FEM). The PE/FEM marching schemes are derived based on linear and cubic finite element discretization along both the vertical and horizontal directions. The Perfectly Matched Layer (PML) technique is applied to the PE/FEM, resulting in a substantial reduction in computational time. Comparison with experimental data for snow covered grounds is made and good agreement was demonstrated, which validates the accuracy of the proposed PE/FEM approach

    Learning Koopman eigenfunctions for prediction and control: the transient case

    Get PDF
    This work presents a data-driven framework for learning eigenfunctions of the Koopman operator geared toward prediction and control. The method relies on the richness of the spectrum of the Koopman operator in the transient, off-attractor, regime to construct a large number of eigenfunctions such that the state (or any other observable quantity of interest) is in the span of these eigenfunctions and hence predictable in a linear fashion. Once a predictor for the uncontrolled part of the system is obtained in this way, the incorporation of control is done through a multi-step prediction error minimization, carried out by a simple linear least-squares regression. The predictor so obtained is in the form of a linear controlled dynamical system and can be readily applied within the Koopman model predictive control framework of [11] to control nonlinear dynamical systems using linear model predictive control tools. The method is entirely data-driven and based purely on convex optimization, with no reliance on neural networks or other non-convex machine learning tools. The novel eigenfunction construction method is also analyzed theoretically, proving rigorously that the family of eigenfunctions obtained is rich enough to span the space of all continuous functions. In addition, the method is extended to construct generalized eigenfunctions that also give rise Koopman invariant subspaces and hence can be used for linear prediction. Detailed numerical examples demonstrate the approach, both for prediction and feedback control

    Deterministic Artificial Intelligence

    Get PDF
    Kirchhoff’s laws give a mathematical description of electromechanics. Similarly, translational motion mechanics obey Newton’s laws, while rotational motion mechanics comply with Euler’s moment equations, a set of three nonlinear, coupled differential equations. Nonlinearities complicate the mathematical treatment of the seemingly simple action of rotating, and these complications lead to a robust lineage of research culminating here with a text on the ability to make rigid bodies in rotation become self-aware, and even learn. This book is meant for basic scientifically inclined readers commencing with a first chapter on the basics of stochastic artificial intelligence to bridge readers to very advanced topics of deterministic artificial intelligence, espoused in the book with applications to both electromechanics (e.g. the forced van der Pol equation) and also motion mechanics (i.e. Euler’s moment equations). The reader will learn how to bestow self-awareness and express optimal learning methods for the self-aware object (e.g. robot) that require no tuning and no interaction with humans for autonomous operation. The topics learned from reading this text will prepare students and faculty to investigate interesting problems of mechanics. It is the fondest hope of the editor and authors that readers enjoy the book

    Marine Debris Survey Manual

    Get PDF
    Over the last several years, concern has increased about the amount of man-made materials lost or discarded at sea and the potential impacts to the environment. The scope of the problem depends on the amounts and types of debris. One problem in making a regional comparison of debris is the lack of a standard methodology. The objective of this manual is to discuss designs and methodologies for assessment studies of marine debris. This manual has been written for managers, researchers, and others who are just entering this area of study and who seek guidance in designing marine debris surveys. Active researchers will be able to use this manual along with applicable references herein as a source for design improvement. To this end, the authors have synthesized their work and reviewed survey techniques that have been used in the past for assessing marine debris, such as sighting surveys, beach surveys, and trawl surveys, and have considered new methods (e.g., aerial photography). All techniques have been put into a general survey planning framework to assist in developing different marine debris surveys. (PDF file contains 100 pages.
    • …
    corecore