11,562 research outputs found

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    H∞ control for networked systems with random communication delays

    Get PDF
    Copyright [2006] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This note is concerned with a new controller design problem for networked systems with random communication delays. Two kinds of random delays are simultaneously considered: i) from the controller to the plant, and ii) from the sensor to the controller, via a limited bandwidth communication channel. The random delays are modeled as a linear function of the stochastic variable satisfying Bernoulli random binary distribution. The observer-based controller is designed to exponentially stabilize the networked system in the sense of mean square, and also achieve the prescribed H∞ disturbance attenuation level. The addressed controller design problem is transformed to an auxiliary convex optimization problem, which can be solved by a linear matrix inequality (LMI) approach. An illustrative example is provided to show the applicability of the proposed method

    Analysis, filtering, and control for Takagi-Sugeno fuzzy models in networked systems

    Get PDF
    Copyright © 2015 Sunjie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The fuzzy logic theory has been proven to be effective in dealing with various nonlinear systems and has a great success in industry applications. Among different kinds of models for fuzzy systems, the so-called Takagi-Sugeno (T-S) fuzzy model has been quite popular due to its convenient and simple dynamic structure as well as its capability of approximating any smooth nonlinear function to any specified accuracy within any compact set. In terms of such a model, the performance analysis and the design of controllers and filters play important roles in the research of fuzzy systems. In this paper, we aim to survey some recent advances on the T-S fuzzy control and filtering problems with various network-induced phenomena. The network-induced phenomena under consideration mainly include communication delays, packet dropouts, signal quantization, and randomly occurring uncertainties (ROUs). With such network-induced phenomena, the developments on T-S fuzzy control and filtering issues are reviewed in detail. In addition, some latest results on this topic are highlighted. In the end, conclusions are drawn and some possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 11301118 and 61174136, the Natural Science Foundation of Jiangsu Province of China under Grant BK20130017, the Fundamental Research Funds for the Central Universities of China under Grant CUSF-DH-D-2013061, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    New advances in H∞ control and filtering for nonlinear systems

    Get PDF
    The main objective of this special issue is to summarise recent advances in H∞ control and filtering for nonlinear systems, including time-delay, hybrid and stochastic systems. The published papers provide new ideas and approaches, clearly indicating the advances made in problem statements, methodologies or applications with respect to the existing results. The special issue also includes papers focusing on advanced and non-traditional methods and presenting considerable novelties in theoretical background or experimental setup. Some papers present applications to newly emerging fields, such as network-based control and estimation

    Robust Predictive Extended State Observer for a Class of Nonlinear Systems with Time-Varying Input Delay

    Full text link
    [EN] This paper deals with asymptotic stabilisation of a class of nonlinear input-delayed systems via dynamic output feedback in the presence of disturbances. The proposed strategy has the structure of an observer-based control law, in which the observer estimates and predicts both the plant state and the external disturbance. A nominal delay value is assumed to be known and stability conditions in terms of linear matrix inequalities are derived for fast-varying delay uncertainties. Asymptotic stability is achieved if the disturbance or the time delay is constant. The controller design problem is also addressed and a numerical example with an unstable system is provided to illustrate the usefulness of the proposed strategy.This work was partially supported by: Ministerio de Economía y Competitividad, Spain (TIN2017-86520-C3-1-R); Universitat Politècnica de València (FPI-UPV 2014 PhD Grant); and Israel Science Foundation (Grant No. 1128/14).Sanz Diaz, R.; García Gil, PJ.; Fridman, E.; Albertos Pérez, P. (2020). Robust Predictive Extended State Observer for a Class of Nonlinear Systems with Time-Varying Input Delay. International Journal of Control. 93(2):217-225. https://doi.org/10.1080/00207179.2018.1562204S217225932Ahmed-Ali, T., Cherrier, E., & Lamnabhi-Lagarrigue, F. (2012). Cascade High Gain Predictors for a Class of Nonlinear Systems. IEEE Transactions on Automatic Control, 57(1), 221-226. doi:10.1109/tac.2011.2161795Artstein, Z. (1982). Linear systems with delayed controls: A reduction. IEEE Transactions on Automatic Control, 27(4), 869-879. doi:10.1109/tac.1982.1103023Basturk, H. I. (2017). Cancellation of unmatched biased sinusoidal disturbances for unknown LTI systems in the presence of state delay. Automatica, 76, 169-176. doi:10.1016/j.automatica.2016.10.006Basturk, H. I., & Krstic, M. (2015). Adaptive sinusoidal disturbance cancellation for unknown LTI systems despite input delay. Automatica, 58, 131-138. doi:10.1016/j.automatica.2015.05.013Bekiaris-Liberis, N., & Krstic, M. (2011). Compensation of Time-Varying Input and State Delays for Nonlinear Systems. Journal of Dynamic Systems, Measurement, and Control, 134(1). doi:10.1115/1.4005278Besançon, G., Georges, D. & Benayache, Z. (2007). Asymptotic state prediction for continuous-time systems with delayed input and application to control. 2007 European control conference (ECC) (pp. 1786–1791).Engelborghs, K., Dambrine, M., & Roose, D. (2001). Limitations of a class of stabilization methods for delay systems. IEEE Transactions on Automatic Control, 46(2), 336-339. doi:10.1109/9.905705Fridman, E. (2001). New Lyapunov–Krasovskii functionals for stability of linear retarded and neutral type systems. Systems & Control Letters, 43(4), 309-319. doi:10.1016/s0167-6911(01)00114-1Fridman, E. (2014). Introduction to Time-Delay Systems. Systems & Control: Foundations & Applications. doi:10.1007/978-3-319-09393-2Fridman, E. (2014). Tutorial on Lyapunov-based methods for time-delay systems. European Journal of Control, 20(6), 271-283. doi:10.1016/j.ejcon.2014.10.001Furtat, I., Fridman, E., & Fradkov, A. (2018). Disturbance Compensation With Finite Spectrum Assignment for Plants With Input Delay. IEEE Transactions on Automatic Control, 63(1), 298-305. doi:10.1109/tac.2017.2732279Germani, A., Manes, C., & Pepe, P. (2002). A new approach to state observation of nonlinear systems with delayed output. IEEE Transactions on Automatic Control, 47(1), 96-101. doi:10.1109/9.981726Guo, L., & Chen, W.-H. (2005). Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. International Journal of Robust and Nonlinear Control, 15(3), 109-125. doi:10.1002/rnc.978Karafyllis, I., & Krstic, M. (2017). Predictor Feedback for Delay Systems: Implementations and Approximations. Systems & Control: Foundations & Applications. doi:10.1007/978-3-319-42378-4Krstic, M. (2008). Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch. Automatica, 44(11), 2930-2935. doi:10.1016/j.automatica.2008.04.010Léchappé, V., Moulay, E., Plestan, F., Glumineau, A., & Chriette, A. (2015). New predictive scheme for the control of LTI systems with input delay and unknown disturbances. Automatica, 52, 179-184. doi:10.1016/j.automatica.2014.11.003Léchappé, V., Moulay, E. & Plestan, F. (2016). Dynamic observation-prediction for LTI systems with a time-varying delay in the input. 2016 IEEE 55th conference on decision and control (CDC) (pp. 2302–2307).Manitius, A., & Olbrot, A. (1979). Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control, 24(4), 541-552. doi:10.1109/tac.1979.1102124Mazenc, F. & Malisoff, M. (2016). New prediction approach for stabilizing time-varying systems under time-varying input delay. 2016 IEEE 55th conference on decision and control (CDC) (pp. 3178–3182).Mondie, S., & Michiels, W. (2003). Finite spectrum assignment of unstable time-delay systems with a safe implementation. IEEE Transactions on Automatic Control, 48(12), 2207-2212. doi:10.1109/tac.2003.820147Najafi, M., Hosseinnia, S., Sheikholeslam, F., & Karimadini, M. (2013). Closed-loop control of dead time systems via sequential sub-predictors. International Journal of Control, 86(4), 599-609. doi:10.1080/00207179.2012.751627Najafi, M., Sheikholeslam, F., Hosseinnia, S., & Wang, Q.-G. (2014). Robust H ∞ control of single input-delay systems based on sequential sub-predictors. IET Control Theory & Applications, 8(13), 1175-1184. doi:10.1049/iet-cta.2012.1004Sanz, R., Garcia, P., & Albertos, P. (2016). Enhanced disturbance rejection for a predictor-based control of LTI systems with input delay. Automatica, 72, 205-208. doi:10.1016/j.automatica.2016.05.019Sanz, R., García, P., & Albertos, P. (2018). A generalized smith predictor for unstable time-delay SISO systems. ISA Transactions, 72, 197-204. doi:10.1016/j.isatra.2017.09.020Sanz, R., García, P., Fridman, E. & Albertos, P. (2017). A predictive extended state observer for a class of nonlinear systems with input delay subject to external disturbances. 2017 IEEE 56th annual conference on decision and control (CDC) (pp. 4345–4350).Sanz, R., Garcia, P., Fridman, E., & Albertos, P. (2018). Rejection of mismatched disturbances for systems with input delay via a predictive extended state observer. International Journal of Robust and Nonlinear Control, 28(6), 2457-2467. doi:10.1002/rnc.4027Shustin, E., & Fridman, E. (2007). On delay-derivative-dependent stability of systems with fast-varying delays. Automatica, 43(9), 1649-1655. doi:10.1016/j.automatica.2007.02.009Suplin, V., Fridman, E., & Shaked, U. (2007). Sampled-data H∞ control and filtering: Nonuniform uncertain sampling. Automatica, 43(6), 1072-1083. doi:10.1016/j.automatica.2006.11.024Yao, J., Jiao, Z., & Ma, D. (2014). RISE-Based Precision Motion Control of DC Motors With Continuous Friction Compensation. IEEE Transactions on Industrial Electronics, 61(12), 7067-7075. doi:10.1109/tie.2014.2321344Zhong, Q.-C. (2004). On Distributed Delay in Linear Control Laws—Part I: Discrete-Delay Implementations. IEEE Transactions on Automatic Control, 49(11), 2074-2080. doi:10.1109/tac.2004.83753

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Global Stabilization of Triangular Systems with Time-Delayed Dynamic Input Perturbations

    Full text link
    A control design approach is developed for a general class of uncertain strict-feedback-like nonlinear systems with dynamic uncertain input nonlinearities with time delays. The system structure considered in this paper includes a nominal uncertain strict-feedback-like subsystem, the input signal to which is generated by an uncertain nonlinear input unmodeled dynamics that is driven by the entire system state (including unmeasured state variables) and is also allowed to depend on time delayed versions of the system state variable and control input signals. The system also includes additive uncertain nonlinear functions, coupled nonlinear appended dynamics, and uncertain dynamic input nonlinearities with time-varying uncertain time delays. The proposed control design approach provides a globally stabilizing delay-independent robust adaptive output-feedback dynamic controller based on a dual dynamic high-gain scaling based structure.Comment: 2017 IEEE International Carpathian Control Conference (ICCC

    H ∞  sliding mode observer design for a class of nonlinear discrete time-delay systems: A delay-fractioning approach

    Get PDF
    Copyright @ 2012 John Wiley & SonsIn this paper, the H ∞  sliding mode observer (SMO) design problem is investigated for a class of nonlinear discrete time-delay systems. The nonlinear descriptions quantify the maximum possible derivations from a linear model, and the system states are allowed to be immeasurable. Attention is focused on the design of a discrete-time SMO such that the asymptotic stability as well as the H ∞  performance requirement of the error dynamics can be guaranteed in the presence of nonlinearities, time delay and external disturbances. Firstly, a discrete-time discontinuous switched term is proposed to make sure that the reaching condition holds. Then, by constructing a new Lyapunov–Krasovskii functional based on the idea of ‘delay fractioning’ and by introducing some appropriate free-weighting matrices, a sufficient condition is established to guarantee the desired performance of the error dynamics in the specified sliding mode surface by solving a minimization problem. Finally, an illustrative example is given to show the effectiveness of the designed SMO design scheme
    corecore