9 research outputs found

    Combinatorics on Words. New Aspects on Avoidability, Defect Effect, Equations and Palindromes

    Get PDF
    In this thesis we examine four well-known and traditional concepts of combinatorics on words. However the contexts in which these topics are treated are not the traditional ones. More precisely, the question of avoidability is asked, for example, in terms of k-abelian squares. Two words are said to be k-abelian equivalent if they have the same number of occurrences of each factor up to length k. Consequently, k-abelian equivalence can be seen as a sharpening of abelian equivalence. This fairly new concept is discussed broader than the other topics of this thesis. The second main subject concerns the defect property. The defect theorem is a well-known result for words. We will analyze the property, for example, among the sets of 2-dimensional words, i.e., polyominoes composed of labelled unit squares. From the defect effect we move to equations. We will use a special way to define a product operation for words and then solve a few basic equations over constructed partial semigroup. We will also consider the satisfiability question and the compactness property with respect to this kind of equations. The final topic of the thesis deals with palindromes. Some finite words, including all binary words, are uniquely determined up to word isomorphism by the position and length of some of its palindromic factors. The famous Thue-Morse word has the property that for each positive integer n, there exists a factor which cannot be generated by fewer than n palindromes. We prove that in general, every non ultimately periodic word contains a factor which cannot be generated by fewer than 3 palindromes, and we obtain a classification of those binary words each of whose factors are generated by at most 3 palindromes. Surprisingly these words are related to another much studied set of words, Sturmian words.Siirretty Doriast

    Towards practical fully homomorphic encryption

    Get PDF
    Fully homomorphic encryption (FHE) allows for computation of arbitrary func- tions on encrypted data by a third party, while keeping the contents of the encrypted data secure. This area of research has exploded in recent years following Gentry’s seminal work. However, the early realizations of FHE, while very interesting from a theoretical and proof-of-concept perspective, are unfortunately far too inefficient to provide any use in practice. The bootstrapping step is the main bottleneck in current FHE schemes. This step refreshes the noise level present in the ciphertexts by homomorphically evaluating the scheme’s decryption function over encryptions of the secret key. Bootstrapping is necessary in all known FHE schemes in order to allow an unlimited amount of computation, as without bootstrapping, the noise in the ciphertexts eventually grows to a point where decryption is no longer guaranteed to be correct. In this work, we present two new bootstrapping algorithms for FHE schemes. The first works on packed ciphertexts, which encrypt many bits at a time, while the second works on unpacked ciphertexts, which encrypt a single bit at a time. Our algorithms lie at the heart of the fastest currently existing implementations of fully homomorphic encryption for packed ciphertexts and for single-bit encryptions, respectively, running hundreds of times as fast for practical parameters as the previous best implementations.Ph.D

    Proceedings of the Fourth Russian Finnish Symposium on Discrete Mathematics

    Get PDF

    Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS'09)

    Get PDF
    The Symposium on Theoretical Aspects of Computer Science (STACS) is held alternately in France and in Germany. The conference of February 26-28, 2009, held in Freiburg, is the 26th in this series. Previous meetings took place in Paris (1984), Saarbr¨ucken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), W¨urzburg (1993), Caen (1994), M¨unchen (1995), Grenoble (1996), L¨ubeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), and Bordeaux (2008). ..
    corecore