340 research outputs found

    Symmetry, Structure and the Constitution of Objects

    Get PDF
    In this paper I focus on the impact on structuralism of the quantum treatment of objects in terms of symmetry groups and, in particular, on the question as to how we might eliminate, or better, reconceptualise such objects in structural terms. With regard to the former, both Cassirer and Eddington not only explicitly and famously tied their structuralism to the development of group theory but also drew on the quantum treatment in order to further their structuralist aims and here I sketch the relevant history with an eye on what lessons might be drawn. With regard to the latter, Ladyman has explicitly cited Castellani's work on the group-theoretical constitution of quantum objects and I indicate both how such an approach needs to be understood if it is to mesh with Ladyman's 'ontic' form of structural realism and how it might accommodate permutation symmetry through a consideration of Huggett's recent account

    Reasoning about Knowledge and Strategies under Hierarchical Information

    Full text link
    Two distinct semantics have been considered for knowledge in the context of strategic reasoning, depending on whether players know each other's strategy or not. The problem of distributed synthesis for epistemic temporal specifications is known to be undecidable for the latter semantics, already on systems with hierarchical information. However, for the other, uninformed semantics, the problem is decidable on such systems. In this work we generalise this result by introducing an epistemic extension of Strategy Logic with imperfect information. The semantics of knowledge operators is uninformed, and captures agents that can change observation power when they change strategies. We solve the model-checking problem on a class of "hierarchical instances", which provides a solution to a vast class of strategic problems with epistemic temporal specifications on hierarchical systems, such as distributed synthesis or rational synthesis

    Behavioural and abstractor specifications revisited

    Get PDF
    In the area of algebraic specification there are two main approaches for defining observational abstraction: behavioural specifications use a notion of observational satisfaction for the axioms of a specification, whereas abstractor specifications define an abstraction from the standard semantics of a specification w.r.t. an observational equivalence relation between algebras. Earlier work by Bidoit, Hennicker, Wirsing has shown that in the case of first-order logic specifications both concepts coincide semantically under mild assumptions. Analogous results have been shown by Sannella and Hofmann for higher-order logic specifications and recently, by Hennicker and Madeira, for specifications of reactive systems using a dynamic logic with binders. In this paper, we bring these results into a common setting: we isolate a small set of characteristic principles to express the behaviour/abstractor equivalence and show that all three mentioned specification frameworks satisfy these principles and therefore their behaviour and abstractor specifications coincide semantically (under mild assumptions). As a new case we consider observational modal logic where observational satisfaction of Hennessy–Milner logic formulae is defined “up to” silent transitions and observational abstraction is defined by weak bisimulation. We show that in this case the behaviour/abstractor equivalence can only be obtained, if we restrict models to weakly deterministic labelled transition systems.publishe

    The foundational legacy of ASL

    Get PDF
    Abstract. We recall the kernel algebraic specification language ASL and outline its main features in the context of the state of research on algebraic specification at the time it was conceived in the early 1980s. We discuss the most significant new ideas in ASL and the influence they had on subsequent developments in the field and on our own work in particular.

    Assumptions and guarantees for compositional noninterference

    Get PDF
    The idea of building secure systems by plugging together "secure" components is appealing, but this requires a definition of security which, in addition to taking care of top-level security goals, is strengthened appropriately in order to be compositional. This approach has been previously studied for information-flow security of shared-variable concurrent programs, but the price for compositionality is very high: a thread must be extremely pessimistic about what an environment might do with shared resources. This pessimism leads to many intuitively secure threads being labelled as insecure. Since in practice it is only meaningful to compose threads which follow an agreed protocol for data access, we take advantage of this to develop a more liberal compositional security condition. The idea is to give the security definition access to the intended pattern of data usage, as expressed by assumption-guarantee style conditions associated with each thread. We illustrate the improved precision by developing the first flow-sensitive security type system that provably enforces a noninterference-like property for concurrent programs. \ua9 2011 IEEE

    Changing Observations in Epistemic Temporal Logic

    Full text link
    We study dynamic changes of agents' observational power in logics of knowledge and time. We consider CTL*K, the extension of CTL* with knowledge operators, and enrich it with a new operator that models a change in an agent's way of observing the system. We extend the classic semantics of knowledge for perfect-recall agents to account for changes of observation, and we show that this new operator strictly increases the expressivity of CTL*K. We reduce the model-checking problem for our logic to that for CTL*K, which is known to be decidable. This provides a solution to the model-checking problem for our logic, but its complexity is not optimal. Indeed we provide a direct decision procedure with better complexity

    Automated verification of equivalence properties of cryptographic protocols

    Get PDF
    The original publication is available at www.springerlink.comInternational audienceIndistinguishability properties are essential in formal verification of cryptographic protocols. They are needed to model anonymity of cryptographic protocols. They are needed to model anonymity properties, strong versions of confidentiality and resistance to offline guessing attacks, and can be conveniently modeled using process equivalences. We present a novel procedure to verify equivalence properties for bounded number of sessions. Our procedure is able to verify trace equivalence for determinate cryptographic protocols. On determinate protocols, trace equivalence coincides with observational equivalence which can therefore be automatically verified for such processes. When protocols are not determinate our procedure can be used for both under- and over-approximations of trace equivalence, which proved successful on examples. The procedure can handle a large set of cryptographic primitives, namely those which can be modeled by an optimally reducing convergent rewrite system. Although, we were unable to prove its termination, it has been implemented in a prototype tool and has been effectively tested on examples, some of which were outside the scope of existing tools

    A Generalisation of Pre-Logical Predicates and Its Applications

    Get PDF
    This thesis proposes a generalisation of pre-logical predicates to simply typed formal systems and their categorical models. We analyse the three elements involved in pre-logical predicates --- syntax, semantics and predicates --- within a categorical framework for typed binding syntax and semantics. We then formulate generalised pre-logical predicates and show two distinguishing properties: a) equivalence with the basic lemma and b) closure of binary pre-logical relations under relational composition. To test the adequacy of this generalisation, we derive pre-logical predicates for various calculi and their categorical models including variations of lambda calculi and non-lambda calculi such as many-sorted algebras as well as first-order logic. We then apply generalised pre-logical predicates to characterising behavioural equivalence. Examples of constructive data refinement of typed formal systems are shown, where behavioural equivalence plays a crucial role in achieving data abstraction
    corecore