127 research outputs found

    Observational Equivalence Using Schedulers for Quantum Processes

    Full text link
    In the study of quantum process algebras, researchers have introduced different notions of equivalence between quantum processes like bisimulation or barbed congruence. However, there are intuitively equivalent quantum processes that these notions do not regard as equivalent. In this paper, we introduce a notion of equivalence named observational equivalence into qCCS. Since quantum processes have both probabilistic and nondeterministic transitions, we introduce schedulers that solve nondeterministic choices and obtain probability distribution of quantum processes. By definition, the restrictions of schedulers change observational equivalence. We propose some definitions of schedulers, and investigate the relation between the restrictions of schedulers and observational equivalence.Comment: In Proceedings QPL 2014, arXiv:1412.810

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 22nd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conference on Theory and Practice of Software, ETAPS 2019. The 29 papers presented in this volume were carefully reviewed and selected from 85 submissions. They deal with foundational research with a clear significance for software science

    A Library for Removing Cache-Based Attacks in Concurrent Information Flow Systems

    Full text link

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2022, which was held during April 4-6, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 23 regular papers presented in this volume were carefully reviewed and selected from 77 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2022, which was held during April 4-6, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 23 regular papers presented in this volume were carefully reviewed and selected from 77 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems

    Formal verification techniques using quantum process calculus

    Get PDF
    Quantum communication is a rapidly growing area of research and development. While the successful construction of a large-scale quantum computer may be some years away, there are already commercial implementations of secure communication using quantum cryptography. The application of formal methods to classical communication and cryptographic systems has been very successful, and is now widely used in industry by organisations such as Intel, Microsoft and NASA. There is reason to believe that similar benefits can be expected for the verification of quantum systems. In this thesis, we focus on the use of process calculus, specifically Communicating Quantum Processes (CQP), for the analysis of quantum protocols. Congruence relations are an important aspect of process calculus, since they provide the foundation for equational reasoning. Previous work on congruence relations for quantum processes excluded the classical information arising from measurements, and was therefore unable to analyse many of the interesting known quantum communication protocols. Developing a congruence relation for general quantum processes is difficult because of the interaction between measurement, entanglement and parallel composition. We define a labelled transition relation for CQP in order to describe external interactions. Based on this semantics, we define a notion of observational equivalence for CQP processes, namely probabilistic branching bisimilarity. We find that this relation is not preserved by parallel composition, however we are able to gain a deeper understanding of the link between probabilistic branching and measurement. Based on this newfound understanding, we present a novel semantics for quantum processes, combining mixed quantum states with probabilistic branching. With respect to this new semantic model, we define full probabilistic branching bisimilarity and prove that it is a congruence. We use this congruence relation to discuss an axiomatic approach to the verification of quantum processes. The quantum teleportation protocol is used as a primary example throughout, and we prove that it is congruent to a quantum channel. We define a translation from CQP to the Quantum Model Checker (QMC) in order to provide automated verification techniques using CQP specifications. We prove that this translation preserves the semantics of CQP processes, thereby enabling a multifaceted approach to formal verification by enhancing the manual techniques of process calculus with the benefits of model checking

    Deductive Verification of Concurrent Programs and its Application to Secure Information Flow for Java

    Get PDF
    Formal verification of concurrent programs still poses a major challenge in computer science. Our approach is an adaptation of the modular rely/guarantee methodology in dynamic logic. Besides functional properties, we investigate language-based security. Our verification approach extends naturally to multi-threaded Java and we present an implementation in the KeY verification system. We propose natural extensions to JML regarding both confidentiality properties and multi-threaded programs

    Probabilistic Semantics: Metric and Logical Character\ua8ations for Nondeterministic Probabilistic Processes

    Get PDF
    In this thesis we focus on processes with nondeterminism and probability in the PTS model, and we propose novel techniques to study their semantics, in terms of both classic behavioral relations and the more recent behavioral metrics. Firstly, we propose a method for decomposing modal formulae in a probabilistic extension of the Hennessy-Milner logic. This decomposition method allows us to derive the compositional properties of probabilistic (bi)simulations. Then, we propose original notions of metrics measuring the disparities in the behavior of processes with respect to (decorated) trace and testing semantics. To capture the differences in the expressive power of the metrics we order them by the relation `makes processes further than'. Thus, we obtain the first spectrum of behavioral metrics on the PTS model. From this spectrum we derive an analogous one for the kernels of the metrics, ordered by the relation `makes strictly less identification than'. Finally, we introduce a novel technique for the logical characterization of both behavioral metrics and their kernels, based on the notions of mimicking formula and distance on formulae. This kind of characterization allows us to obtain the first example of a spectrum of distances on processes obtained directly from logics. Moreover, we show that the kernels of the metrics can be characterized by simply comparing the mimicking formulae of processes

    Probabilistic Semantics: Metric and Logical Character¨ations for Nondeterministic Probabilistic Processes

    Get PDF
    In this thesis we focus on processes with nondeterminism and probability in the PTS model, and we propose novel techniques to study their semantics, in terms of both classic behavioral relations and the more recent behavioral metrics. Firstly, we propose a method for decomposing modal formulae in a probabilistic extension of the Hennessy-Milner logic. This decomposition method allows us to derive the compositional properties of probabilistic (bi)simulations. Then, we propose original notions of metrics measuring the disparities in the behavior of processes with respect to (decorated) trace and testing semantics. To capture the differences in the expressive power of the metrics we order them by the relation `makes processes further than'. Thus, we obtain the first spectrum of behavioral metrics on the PTS model. From this spectrum we derive an analogous one for the kernels of the metrics, ordered by the relation `makes strictly less identification than'. Finally, we introduce a novel technique for the logical characterization of both behavioral metrics and their kernels, based on the notions of mimicking formula and distance on formulae. This kind of characterization allows us to obtain the first example of a spectrum of distances on processes obtained directly from logics. Moreover, we show that the kernels of the metrics can be characterized by simply comparing the mimicking formulae of processes

    形式的手法の量子暗号への応用

    Get PDF
    学位の種別:課程博士University of Tokyo(東京大学
    corecore