34 research outputs found

    ?????? ?????? ????????? ????????? ?????? ?????? ?????? ??????

    Get PDF
    Department of Urban and Environmental Engineering (Environmental Science and Engineering)Sea ice closely interacts with the atmosphere and ocean systems. Land fast sea ice (fast ice) is a kind of sea ice attached to the shore, ice shelves, or grounded icebergs. It is widely distributed along the Antarctic coast and acts as an interface between the atmosphere and the ocean, affecting heat balance feedback, thermal insulation effects, and deep water formation depending on the temporal and spatial effects of the environmental conditions. It also plays an important role in the biological aspects of Antarctica. Attached to the Antarctic glacier is strongly associated with calving events of ice shelf as it is physically coupled with glaciers at the terminus. The existing Antarctic fast ice has been mainly focused on the East Antarctic, especially for the research on long-term fast ice. Several case studies for West Antarctic fast ice with satellite images were performed in local areas. Various types of satellite data and detection techniques were utilized to successfully detect fast ice. In addition, long-term fast ice maps specifically focused on the Amundsen sea of West Antarctica were generated to investigate the distribution and variability of fast ice. This thesis reports the results of fast ice detection algorithms that have been developed using various satellite images that can be used for fast ice detection. Along with the use of multiple satellite data, the proposed fast ice detection algorithms can more effectively detect fast ice, which then allows to obtain more accurate fast ice detection and produce long-term fast ice with high accuracy. Especially, the distribution and variability of time-series fast ice in West Antarctica, which is more concentrated in the Amundsen Sea, were analyzed together with bathymetry data and the distribution of glacier icebergs. In order to detect fast ice, machine learning techniques were basically used in this thesis. Two classes (i.e. fast ice and non-fast ice) were classified. Using MODIS images, there was a problem that fast ice was not produced in cloud cover areas and the polar night season, which is winter season in Antarctica. MODIS and AMSR-E satellite data were selectively used to solve the cloud contamination problem. Correlation-related variables were finally added based on the fact that fast ice is motionless for a certain period of time, and fast ice detection was performed at 15-day intervals using the improved input variables. Active microwave sensor data, ALOS PALSAR, was also used to detect fast ice and to validate fast ice detection results. Its high-spatial resolution allows to extract fast ice boundary more accurately. Fast ice detections showed good agreement with available ALOS PALSAR SAR images and MODIS reflectance images. Nearly decade-long fast ice extents were produced in the Amundsen Sea of West Antarctica and analyzed in terms of spatiotemporal variations with bathymetry and icebergs calved from ice shelves in study area. In addition, anomalous fast ice breakup events were examined, which suggests the importance of fast ice on the stability of ice shelves.clos

    Aerosol Remote Sensing in Polar Regions

    Get PDF
    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness tau(lambda) at visible and near-infrared wavelengths, from which best-fit values of ngstrm's exponent alpha were calculated. Analyzing these data, the monthly mean values of tau(0.50 micrometers) and alpha and the relative frequency histograms of the daily mean values of both parameters were determined for winter-spring and summer-autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of alpha versus tau(0.50 micrometers) showed: (i) a considerable increase in tau(0.50 micrometers) for the Arctic aerosol from summer to winter-spring, without marked changes in alpha; and (ii) a marked increase in tau(0.50 micrometer) passing from the Antarctic Plateau to coastal sites, whereas alpha decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of tau(lambda) and alpha at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterize vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-lesund. Satellite-based MODIS, MISR, and AATSR retrievals of tau(lambda) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei, accumulation and coarse mode particles for Arctic haze, summer background aerosol, Asian dust and boreal forest fire smoke, and for various background austral summer aerosol types at coastal and high-altitude Antarctic sites. The main columnar aerosol optical characteristics were determined for all 14 particle modes, based on in-situ measurements of the scattering and absorption coefficients. Diurnally averaged direct aerosol-induced radiative forcing and efficiency were calculated for a set of multimodal aerosol extinction models, using various Bidirectional Reflectance Distribution Function models over vegetation-covered, oceanic and snow-covered surfaces. These gave a reliable measure of the pronounced effects of aerosols on the radiation balance of the surface-atmosphere system over polar regions

    Community Review of Southern Ocean Satellite Data Needs

    Get PDF
    This review represents the Southern Ocean community’s satellite data needs for the coming decade. Developed through widespread engagement, and incorporating perspectives from a range of stakeholders (both research and operational), it is designed as an important community-driven strategy paper that provides the rationale and information required for future planning and investment. The Southern Ocean is vast but globally connected, and the communities that require satellite-derived data in the region are diverse. This review includes many observable variables, including sea-ice properties, sea-surface temperature, sea-surface height, atmospheric parameters, marine biology (both micro and macro) and related activities, terrestrial cryospheric connections, sea-surface salinity, and a discussion of coincident and in situ data collection. Recommendations include commitment to data continuity, increase in particular capabilities (sensor types, spatial, temporal), improvements in dissemination of data/products/uncertainties, and innovation in calibration/validation capabilities. Full recommendations are detailed by variable as well as summarized. This review provides a starting point for scientists to understand more about Southern Ocean processes and their global roles, for funders to understand the desires of the community, for commercial operators to safely conduct their activities in the Southern Ocean, and for space agencies to gain greater impact from Southern Ocean-related acquisitions and missions.The authors acknowledge the Climate at the Cryosphere program and the Southern Ocean Observing System for initiating this community effort, WCRP, SCAR, and SCOR for endorsing the effort, and CliC, SOOS, and SCAR for supporting authors’ travel for collaboration on the review. Jamie Shutler’s time on this review was funded by the European Space Agency project OceanFlux Greenhouse Gases Evolution (Contract number 4000112091/14/I-LG)

    Interannual sea ice thickness variability in the Bay of Bothnia

    Get PDF
    While variations of Baltic Sea ice extent and thickness have been extensively studied, there is little information about drift ice thickness, distribution, and its variability. In our study, we quantify the interannual variability of sea ice thickness in the Bay of Bothnia during the years 2003–2016. We use various different data sets: official ice charts, drilling data from the regular monitoring stations in the coastal fast ice zone, and helicopter and shipborne electromagnetic soundings. We analyze the different data sets and compare them to each other to characterize the interannual variability, to discuss the ratio of level and deformed ice, and to derive ice thickness distributions in the drift ice zone. In the fast ice zone the average ice thickness is 0.58±0.13&thinsp;m. Deformed ice increases the variability of ice conditions in the drift ice zone, where the average ice thickness is 0.92±0.33&thinsp;m. On average, the fraction of deformed ice is 50&thinsp;% to 70&thinsp;% of the total volume. In heavily ridged ice regions near the coast, mean ice thickness is approximately half a meter thicker than that of pure thermodynamically grown fast ice. Drift ice exhibits larger interannual variability than fast ice.</p

    Polar Systems under Pressure : 27th International Polar Conference, Rostock, 25 - 29 March 2018, German Society for Polar Research

    Get PDF

    Biological responses to change in Antarctic sea ice habitats

    Get PDF
    Sea ice is a key habitat in the high latitude Southern Ocean and is predicted to change in its extent, thickness and duration in coming decades. The sea-ice cover is instrumental in mediating ocean–atmosphere exchanges and provides an important substrate for organisms from microbes and algae to predators. Antarctic krill, Euphausia superba, is reliant on sea ice during key phases of its life cycle, particularly during the larval stages, for food and refuge from their predators, while other small grazers, including copepods and amphipods, either live in the brine channel system or find food and shelter at the ice-water interface and in gaps between rafted ice blocks. Fish, such as the Antarctic silverfish Pleuragramma antarcticum, use platelet ice (loosely-formed frazil crystals) as an essential hatching and nursery ground. In this paper, we apply the framework of the Marine Ecosystem Assessment for the Southern Ocean (MEASO) to review current knowledge about relationships between sea ice and associated primary production and secondary consumers, their status and the drivers of sea-ice change in this ocean. We then use qualitative network modelling to explore possible responses of lower trophic level sea-ice biota to different perturbations, including warming air and ocean temperatures, increased storminess and reduced annual sea-ice duration. This modelling shows that pelagic algae, copepods, krill and fish are likely to decrease in response to warming temperatures and reduced sea-ice duration, while salp populations will likely increase under conditions of reduced sea-ice duration and increased number of days of &gt;0°C. Differences in responses to these pressures between the five MEASO sectors were also explored. Greater impacts of environmental pressures on ice-related biota occurring presently were found for the West and East Pacific sectors (notably the Ross Sea and western Antarctic Peninsula), with likely flow-on effects to the wider ecosystem. All sectors are expected to be impacted over coming decades. Finally, we highlight priorities for future sea ice biological research to address knowledge gaps in this field
    corecore