477,287 research outputs found

    Decentralized Maximum Likelihood Estimation for Sensor Networks Composed of Nonlinearly Coupled Dynamical Systems

    Full text link
    In this paper we propose a decentralized sensor network scheme capable to reach a globally optimum maximum likelihood (ML) estimate through self-synchronization of nonlinearly coupled dynamical systems. Each node of the network is composed of a sensor and a first-order dynamical system initialized with the local measurements. Nearby nodes interact with each other exchanging their state value and the final estimate is associated to the state derivative of each dynamical system. We derive the conditions on the coupling mechanism guaranteeing that, if the network observes one common phenomenon, each node converges to the globally optimal ML estimate. We prove that the synchronized state is globally asymptotically stable if the coupling strength exceeds a given threshold. Acting on a single parameter, the coupling strength, we show how, in the case of nonlinear coupling, the network behavior can switch from a global consensus system to a spatial clustering system. Finally, we show the effect of the network topology on the scalability properties of the network and we validate our theoretical findings with simulation results.Comment: Journal paper accepted on IEEE Transactions on Signal Processin

    Asynchronous Silent Programmable Matter Achieves Leader Election and Compaction

    Get PDF
    We study models and algorithms for Programmable Matter (PM), that is matter with the ability to change its physical properties (e.g., shape or optical properties) in a programmable fashion. PM can be implemented by assembling a system of weak self-organizing computational elements, called particles, that can be programmed via distributed algorithms to collectively achieve some global task. Recent advances in the production of nanotechnologies have rendered such systems increasingly possible in practice, thus triggering research interests from many areas of computer science. The most established models for PM assume that particles: are modeled as finite state automata; are all identical, executing the same algorithm based on local observation of the surroundings; live and operate in the cells of a hexagonal grid; can move from one cell to another by repeatedly alternating between a contracted state (a particle occupies one cell) and an expanded state (a particle occupies two neighboring cells). Given these elementary features, it is rather hard to design distributed algorithms even for basic tasks and, in fact, all existing solutions to solve fundamental problems via PM have resorted to endowing PM systems with various capabilities to overcome such hardness, thus assuming quite unrealistic features. In this paper, we move toward more realistic computational models for PM. Specifically, we first introduce, a new modeling approach that relaxes several assumptions used in previous ones. Second, we present a distributed algorithm to solve, in the model, a foundational primitive for PM, namely Leader Election. This algorithm works in O(n) rounds for all initial configurations of n particles that are both connected (i.e. particles induce a connected graph) and compact (i.e. without holes, that is no empty cells surrounded by particles occur). As usual in asynchronous contexts, a round is intended as the time within which all particles have been activated at least once. Third, we show that, if the initial configuration admits holes, it is impossible to achieve leader election while preserving connectivity. Finally, by slightly empowering the robots, we design an algorithm to handle initial configurations admitting holes that in O(n2) rounds solves the leader election problem while obtaining also compaction

    Convergence Rate Analysis of Distributed Gossip (Linear Parameter) Estimation: Fundamental Limits and Tradeoffs

    Full text link
    The paper considers gossip distributed estimation of a (static) distributed random field (a.k.a., large scale unknown parameter vector) observed by sparsely interconnected sensors, each of which only observes a small fraction of the field. We consider linear distributed estimators whose structure combines the information \emph{flow} among sensors (the \emph{consensus} term resulting from the local gossiping exchange among sensors when they are able to communicate) and the information \emph{gathering} measured by the sensors (the \emph{sensing} or \emph{innovations} term.) This leads to mixed time scale algorithms--one time scale associated with the consensus and the other with the innovations. The paper establishes a distributed observability condition (global observability plus mean connectedness) under which the distributed estimates are consistent and asymptotically normal. We introduce the distributed notion equivalent to the (centralized) Fisher information rate, which is a bound on the mean square error reduction rate of any distributed estimator; we show that under the appropriate modeling and structural network communication conditions (gossip protocol) the distributed gossip estimator attains this distributed Fisher information rate, asymptotically achieving the performance of the optimal centralized estimator. Finally, we study the behavior of the distributed gossip estimator when the measurements fade (noise variance grows) with time; in particular, we consider the maximum rate at which the noise variance can grow and still the distributed estimator being consistent, by showing that, as long as the centralized estimator is consistent, the distributed estimator remains consistent.Comment: Submitted for publication, 30 page

    Distributed Decision Through Self-Synchronizing Sensor Networks in the Presence of Propagation Delays and Asymmetric Channels

    Full text link
    In this paper we propose and analyze a distributed algorithm for achieving globally optimal decisions, either estimation or detection, through a self-synchronization mechanism among linearly coupled integrators initialized with local measurements. We model the interaction among the nodes as a directed graph with weights (possibly) dependent on the radio channels and we pose special attention to the effect of the propagation delay occurring in the exchange of data among sensors, as a function of the network geometry. We derive necessary and sufficient conditions for the proposed system to reach a consensus on globally optimal decision statistics. One of the major results proved in this work is that a consensus is reached with exponential convergence speed for any bounded delay condition if and only if the directed graph is quasi-strongly connected. We provide a closed form expression for the global consensus, showing that the effect of delays is, in general, the introduction of a bias in the final decision. Finally, we exploit our closed form expression to devise a double-step consensus mechanism able to provide an unbiased estimate with minimum extra complexity, without the need to know or estimate the channel parameters.Comment: To be published on IEEE Transactions on Signal Processin

    Distributed Linear Parameter Estimation: Asymptotically Efficient Adaptive Strategies

    Full text link
    The paper considers the problem of distributed adaptive linear parameter estimation in multi-agent inference networks. Local sensing model information is only partially available at the agents and inter-agent communication is assumed to be unpredictable. The paper develops a generic mixed time-scale stochastic procedure consisting of simultaneous distributed learning and estimation, in which the agents adaptively assess their relative observation quality over time and fuse the innovations accordingly. Under rather weak assumptions on the statistical model and the inter-agent communication, it is shown that, by properly tuning the consensus potential with respect to the innovation potential, the asymptotic information rate loss incurred in the learning process may be made negligible. As such, it is shown that the agent estimates are asymptotically efficient, in that their asymptotic covariance coincides with that of a centralized estimator (the inverse of the centralized Fisher information rate for Gaussian systems) with perfect global model information and having access to all observations at all times. The proof techniques are mainly based on convergence arguments for non-Markovian mixed time scale stochastic approximation procedures. Several approximation results developed in the process are of independent interest.Comment: Submitted to SIAM Journal on Control and Optimization journal. Initial Submission: Sept. 2011. Revised: Aug. 201

    On the genericity properties in networked estimation: Topology design and sensor placement

    Full text link
    In this paper, we consider networked estimation of linear, discrete-time dynamical systems monitored by a network of agents. In order to minimize the power requirement at the (possibly, battery-operated) agents, we require that the agents can exchange information with their neighbors only \emph{once per dynamical system time-step}; in contrast to consensus-based estimation where the agents exchange information until they reach a consensus. It can be verified that with this restriction on information exchange, measurement fusion alone results in an unbounded estimation error at every such agent that does not have an observable set of measurements in its neighborhood. To over come this challenge, state-estimate fusion has been proposed to recover the system observability. However, we show that adding state-estimate fusion may not recover observability when the system matrix is structured-rank (SS-rank) deficient. In this context, we characterize the state-estimate fusion and measurement fusion under both full SS-rank and SS-rank deficient system matrices.Comment: submitted for IEEE journal publicatio
    • …
    corecore