22,113 research outputs found

    Overview of Hydra: a concurrent language for synchronous digital circuit design

    Get PDF
    Hydra is a computer hardware description language that integrates several kinds of software tool (simulation, netlist generation and timing analysis) within a single circuit specification. The design language is inherently concurrent, and it offers black box abstraction and general design patterns that simplify the design of circuits with regular structure. Hydra specifications are concise, allowing the complete design of a computer system as a digital circuit within a few pages. This paper discusses the motivations behind Hydra, and illustrates the system with a significant portion of the design of a basic RISC processor

    Functional HDLs : a historical overview

    Get PDF
    When designing hardware systems, a variety of models and languages are available whose aim is to manage complexity by allowing specification of such systems at different abstraction levels. Languages such as Verilog and VHDL where designed with simulation in mind rather than synthesis and lack features such as parametrised complex circuit definitions, a must for the design of generic complex systems. A more modern approach is the use of functional languages for hardware description that take advantage of the inherent abstraction in this paradigm, resulting in a more concise and manageable description of the system. This paper gives an overview of different functional language implementations for hardware description, highlighting their historical significance in terms of their capabilities and design approach. We will compare and contrast different ways that certain features, such as circuit sharing, have been implemented in these.peer-reviewe

    Hardware Acceleration Using Functional Languages

    Get PDF
    Cílem této práce je prozkoumat možnosti využití funkcionálního paradigmatu pro hardwarovou akceleraci, konkrétně pro datově paralelní úlohy. Úroveň abstrakce tradičních jazyků pro popis hardwaru, jako VHDL a Verilog, přestáví stačit. Pro popis na algoritmické či behaviorální úrovni se rozmáhají jazyky původně navržené pro vývoj softwaru a modelování, jako C/C++, SystemC nebo MATLAB. Funkcionální jazyky se s těmi imperativními nemůžou měřit v rozšířenosti a oblíbenosti mezi programátory, přesto je předčí v mnoha vlastnostech, např. ve verifikovatelnosti, schopnosti zachytit inherentní paralelismus a v kompaktnosti kódu. Pro akceleraci datově paralelních výpočtů se často používají jednotky FPGA, grafické karty (GPU) a vícejádrové procesory. Praktická část této práce rozšiřuje existující knihovnu Accelerate pro počítání na grafických kartách o výstup do VHDL. Accelerate je možno chápat jako doménově specifický jazyk vestavěný do Haskellu s backendem pro prostředí NVIDIA CUDA. Rozšíření pro vysokoúrovňovou syntézu obvodů ve VHDL představené v této práci používá stejný jazyk a frontend.The aim of this thesis is to research how the functional paradigm can be used for hardware acceleration with an emphasis on data-parallel tasks. The level of abstraction of the traditional hardware description languages, such as VHDL or Verilog, is becoming to low. High-level languages from the domains of software development and modeling, such as C/C++, SystemC or MATLAB, are experiencing a boom for hardware description on the algorithmic or behavioral level. Functional Languages are not so commonly used, but they outperform imperative languages in verification, the ability to capture inherent paralellism and the compactness of code. Data-parallel task are often accelerated on FPGAs, GPUs and multicore processors. In this thesis, we use a library for general-purpose GPU programs called Accelerate and extend it to produce VHDL. Accelerate is a domain-specific language embedded into Haskell with a backend for the NVIDIA CUDA platform. We use the language and its frontend, and create a new backend for high-level synthesis of circuits in VHDL.

    Implementing Explicit and Finding Implicit Sharing in Embedded DSLs

    Full text link
    Aliasing, or sharing, is prominent in many domains, denoting that two differently-named objects are in fact identical: a change in one object (memory cell, circuit terminal, disk block) is instantly reflected in the other. Languages for modelling such domains should let the programmer explicitly define the sharing among objects or expressions. A DSL compiler may find other identical expressions and share them, implicitly. Such common subexpression elimination is crucial to the efficient implementation of DSLs. Sharing is tricky in embedded DSL, since host aliasing may correspond to copying of the underlying objects rather than their sharing. This tutorial summarizes discussions of implementing sharing in Haskell DSLs for automotive embedded systems and hardware description languages. The technique has since been used in a Haskell SAT solver and the DSL for music synthesis. We demonstrate the embedding in pure Haskell of a simple DSL with a language form for explicit sharing. The DSL also has implicit sharing, implemented via hash-consing. Explicit sharing greatly speeds up hash-consing. The seemingly imperative nature of hash-consing is hidden beneath a simple combinator language. The overall implementation remains pure functional and easy to reason about.Comment: In Proceedings DSL 2011, arXiv:1109.032

    Ferromagnetic models for cooperative behavior: Revisiting Universality in complex phenomena

    Full text link
    Ferromagnetic models are harmonic oscillators in statistical mechanics. Beyond their original scope in tackling phase transition and symmetry breaking in theoretical physics, they are nowadays experiencing a renewal applicative interest as they capture the main features of disparate complex phenomena, whose quantitative investigation in the past were forbidden due to data lacking. After a streamlined introduction to these models, suitably embedded on random graphs, aim of the present paper is to show their importance in a plethora of widespread research fields, so to highlight the unifying framework reached by using statistical mechanics as a tool for their investigation. Specifically we will deal with examples stemmed from sociology, chemistry, cybernetics (electronics) and biology (immunology).Comment: Contributing to the proceedings of the Conference "Mathematical models and methods for Planet Heart", INdAM, Rome 201

    An Embedded Domain Specific Language to Model, Transform and Quality Assure Business Processes in Business-Driven Development

    Get PDF
    In Business-Driven Development (BDD), business process models are produced by business analysts. To ensure that the business requirements are satisfied, the IT solution is directly derived through a process of model refinement. If models do not contain all the required technical details or contain errors, the derived implementation would be incorrect and the BDD lifecycle would have to be repeated. In this project we present a functional domain specific language embedded in Haskell, with which: 1) models can rapidly be produced in a concise and abstract manner, 2) enables focus on the specifications rather than the implementation, 3) ensures that all the required details, to generate the executable code, are specified, 4) models can be transformed, analysed and interpreted in various ways, 5) quality assures models by carrying out three types of checks; by Haskell.s type checker, at construction-time and by functions that analyse the soundness of models, 6) enables users to define quality assured composite model transformations

    Synchronous Digital Circuits as Functional Programs

    Get PDF
    Functional programming techniques have been used to describe synchronous digital circuits since the early 1980s and have proven successful at describing certain types of designs. Here we survey the systems and formal underpinnings that constitute this tradition. We situate these techniques with respect to other formal methods for hardware design and discuss the work yet to be done
    corecore