1,464 research outputs found

    Probably Unknown: Deep Inverse Sensor Modelling In Radar

    Full text link
    Radar presents a promising alternative to lidar and vision in autonomous vehicle applications, able to detect objects at long range under a variety of weather conditions. However, distinguishing between occupied and free space from raw radar power returns is challenging due to complex interactions between sensor noise and occlusion. To counter this we propose to learn an Inverse Sensor Model (ISM) converting a raw radar scan to a grid map of occupancy probabilities using a deep neural network. Our network is self-supervised using partial occupancy labels generated by lidar, allowing a robot to learn about world occupancy from past experience without human supervision. We evaluate our approach on five hours of data recorded in a dynamic urban environment. By accounting for the scene context of each grid cell our model is able to successfully segment the world into occupied and free space, outperforming standard CFAR filtering approaches. Additionally by incorporating heteroscedastic uncertainty into our model formulation, we are able to quantify the variance in the uncertainty throughout the sensor observation. Through this mechanism we are able to successfully identify regions of space that are likely to be occluded.Comment: 6 full pages, 1 page of reference

    Applications of DEC-MDPs in multi-robot systems

    Get PDF
    International audienceOptimizing the operation of cooperative multi-robot systems that can cooperatively act in large and complex environments has become an important focal area of research. This issue is motivated by many applications involving a set of cooperative robots that have to decide in a decentralized way how to execute a large set of tasks in partially observable and uncertain environments. Such decision problems are encountered while developing exploration rovers, teams of patrolling robots, rescue-robot colonies, mine-clearance robots, et cetera.In this chapter, we introduce problematics related to the decentralized control of multi-robot systems. We rst describe some applicative domains and review the main characteristics of the decision problems the robots must deal with. Then, we review some existing approaches to solve problems of multiagent decen- tralized control in stochastic environments. We present the Decentralized Markov Decision Processes and discuss their applicability to real-world multi-robot applications. Then, we introduce OC-DEC-MDPs and 2V-DEC-MDPs which have been developed to increase the applicability of DEC-MDPs

    Multiagent Deep Reinforcement Learning: Challenges and Directions Towards Human-Like Approaches

    Full text link
    This paper surveys the field of multiagent deep reinforcement learning. The combination of deep neural networks with reinforcement learning has gained increased traction in recent years and is slowly shifting the focus from single-agent to multiagent environments. Dealing with multiple agents is inherently more complex as (a) the future rewards depend on the joint actions of multiple players and (b) the computational complexity of functions increases. We present the most common multiagent problem representations and their main challenges, and identify five research areas that address one or more of these challenges: centralised training and decentralised execution, opponent modelling, communication, efficient coordination, and reward shaping. We find that many computational studies rely on unrealistic assumptions or are not generalisable to other settings; they struggle to overcome the curse of dimensionality or nonstationarity. Approaches from psychology and sociology capture promising relevant behaviours such as communication and coordination. We suggest that, for multiagent reinforcement learning to be successful, future research addresses these challenges with an interdisciplinary approach to open up new possibilities for more human-oriented solutions in multiagent reinforcement learning.Comment: 37 pages, 6 figure

    Engineering Emergence: A Survey on Control in the World of Complex Networks

    Get PDF
    Complex networks make an enticing research topic that has been increasingly attracting researchers from control systems and various other domains over the last two decades. The aim of this paper was to survey the interest in control related to complex networks research over time since 2000 and to identify recent trends that may generate new research directions. The survey was performed for Web of Science, Scopus, and IEEEXplore publications related to complex networks. Based on our findings, we raised several questions and highlighted ongoing interests in the control of complex networks.publishedVersio
    • …
    corecore