124 research outputs found

    Unknown Input Functional Observability of Descriptor Systems with Neutral and Distributed Delay Effects

    Get PDF
    International audienceIn this paper a general class of linear systems with time-delays is considered, which includes linear classical systems, linear systems with commensurate delays, neutral systems and singular systems with delays. After given a formal definition of functional backward observability (BO), an easily testable condition is found. The fulfillment of the obtained condition allows for the reconstruction of the trajectories of the system under consideration using the actual and past values of the system output and some of its derivatives. The methodology we follow consists in an iterative algorithm based upon the classical Silverman algorithm used for inversion of linear systems. By using basic module theory we manage to prove that the proposed algorithm is convergent. A direct application of studying functional observability is that a condition can be derived for systems with distributed delays also, we do this as a case of study. The obtained results are illustrated by two examples, one is merely academic but illustrates clearly the kind of systems which the proposed methodology works for and the other is a practical system with distributed delays

    Impulsive fixed-time observer for linear time-delay systems

    Get PDF
    International audienceThis paper presents a fixed-time observer for a general class of linear time-delay systems. In contrast to many existing observers, which normally estimate system's tra-jectory in an asymptotic fashion, the proposed observer estimates system's state in a prescribed time. The proposed fixed-time observer is realized by updating the observer in an impulsive manner. Simulation results are also presented to illustrate the convergence behavior of the proposed fixed-time observer

    Spectrum analysis of LTI continuous-time systems with constant delays: A literature overview of some recent results

    Get PDF
    In recent decades, increasingly intensive research attention has been given to dynamical systems containing delays and those affected by the after-effect phenomenon. Such research covers a wide range of human activities and the solutions of related engineering problems often require interdisciplinary cooperation. The knowledge of the spectrum of these so-called time-delay systems (TDSs) is very crucial for the analysis of their dynamical properties, especially stability, periodicity, and dumping effect. A great volume of mathematical methods and techniques to analyze the spectrum of the TDSs have been developed and further applied in the most recent times. Although a broad family of nonlinear, stochastic, sampled-data, time-variant or time-varying-delay systems has been considered, the study of the most fundamental continuous linear time-invariant (LTI) TDSs with fixed delays is still the dominant research direction with ever-increasing new results and novel applications. This paper is primarily aimed at a (systematic) literature overview of recent (mostly published between 2013 to 2017) advances regarding the spectrum analysis of the LTI-TDSs. Specifically, a total of 137 collected articles-which are most closely related to the research area-are eventually reviewed. There are two main objectives of this review paper: First, to provide the reader with a detailed literature survey on the selected recent results on the topic and Second, to suggest possible future research directions to be tackled by scientists and engineers in the field. © 2013 IEEE.MSMT-7778/2014, FEDER, European Regional Development Fund; LO1303, FEDER, European Regional Development Fund; CZ.1.05/2.1.00/19.0376, FEDER, European Regional Development FundEuropean Regional Development Fund through the Project CEBIA-Tech Instrumentation [CZ.1.05/2.1.00/19.0376]; National Sustainability Program Project [LO1303 (MSMT-7778/2014)

    Discontinuity propagation in delay differential-algebraic equations

    Full text link
    The propagation of primary discontinuities in initial value problems for linear delay differential-algebraic equations (DDAEs) is discussed. Based on the (quasi-) Weierstra{\ss} form for regular matrix pencil, a complete characterization of the different propagation types is given and algebraic criteria in terms of the matrices are developed. The analysis, which is based on the method of steps, takes into account all possible inhomogeneities and history functions and thus serves as the worst-case scenario. Moreover, it reveals possible hidden delays in the DDAE. The new classification for DDAEs is compared to existing approaches in the literature and the impact of splicing conditions on the classification is studied

    Stability and stabilization of fractional order time delay systems

    Get PDF
    U ovom radu predstavljeni su neki osnovni rezultati koji se odnose na kriterijume stabilnosti sistema necelobrojnog reda sa kašnjenjem kao i za sisteme necelobrojnog reda bez kašnjenja.Takođe, dobijeni su i predstavljeni dovoljni uslovi za konačnom vremenskom stabilnost i stabilizacija za (ne)linearne (ne)homogene kao i za perturbovane sisteme necelobrojnog reda sa vremenskim kašnjenjem. Nekoliko kriterijuma stabilnosti za ovu klasu sistema necelobrojnog reda je predloženo korišćenjem nedavno dobijene generalizovane Gronval nejednakosti, kao i 'klasične' Belman-Gronval nejednakosti. Neki zaključci koji se odnose na stabilnost sistema necelobrojnog reda su slični onima koji se odnose na klasične sisteme celobrojnog reda. Na kraju, numerički primer je dat u cilju ilustracije značaja predloženog postupka.In this paper, some basic results of the stability criteria of fractional order system with time delay as well as free delay are presented. Also, we obtained and presented sufficient conditions for finite time stability and stabilization for (non)linear (non)homogeneous as well as perturbed fractional order time delay systems. Several stability criteria for this class of fractional order systems are proposed using a recently suggested generalized Gronwall inequality as well as 'classical' Bellman-Gronwall inequality. Some conclusions for stability are similar to those of classical integerorder differential equations. Finally, a numerical example is given to illustrate the validity of the proposed procedure

    Decentralized control of uncertain interconnected time-delay systems

    Get PDF
    In this thesis, novel stability analysis and control synthesis methodologies are proposed for uncertain interconnected time-delay systems. It is known that numerous real-world systems such as multi-vehicle flight formation, automated highway systems, communication networks and power systems can be modeled as the interconnection of a number of subsystems. Due to the complex and distributed structure of this type of systems, they are subject to propagation and processing delays, which cannot be ignored in the modeling process. On the other hand, in a practical environment the parameters of the system are not known exactly, and usually the nominal model is used for controller design. It is important, however, to ensure that robust stability and performance are achieved, that is, the overall closed-loop system remains stable and performs satisfactorily in the presence of uncertainty. To address the underlying problem, the notion of decentralized fixed modes is extended to the class of linear time-invariant (LTI) time-delay systems, and a necessary and sufficient condition is proposed for stabilizability of this type of systems by means of a finite-dimensional decentralized LTI output feedback controller. A near-optimal decentralized servomechanism control design method and a cooperative predictive control scheme are then presented for uncertain LTI hierarchical interconnected systems. A H {592} decentralized overlapping control design technique is provided consequently which guarantees closed-loop stability and disturbance attenuation in the presence of delay. In particular, for the case of highly uncertain time-delay systems, an adaptive switching control methodology is proposed to achieve output tracking and disturbance rejection. Simulation results are provided throughout the thesis to support the theoretical finding

    Observer-Based Robust Controller Design for Nonlinear Fractional-Order Uncertain Systems via LMI

    Get PDF
    We discuss the observer-based robust controller design problem for a class of nonlinear fractional-order uncertain systems with admissible time-variant uncertainty in the case of the fractional-order satisfying 0<α<1. Based on direct Lyapunov approach, a sufficient condition for the robust asymptotic stability of the observer-based nonlinear fractional-order uncertain systems is presented. Employing Finsler’s Lemma, the systematic robust stabilization design algorithm is then proposed in terms of linear matrix inequalities (LMIs). The efficiency and advantage of the proposed algorithm are finally illustrated by two numerical simulations

    Stability analysis of linear ODE-PDE interconnected systems

    Get PDF
    Les systèmes de dimension infinie permettent de modéliser un large spectre de phénomènes physiques pour lesquels les variables d'états évoluent temporellement et spatialement. Ce manuscrit s'intéresse à l'évaluation de la stabilité de leur point d'équilibre. Deux études de cas seront en particulier traitées : l'analyse de stabilité des systèmes interconnectés à une équation de transport, et à une équation de réaction-diffusion. Des outils théoriques existent pour l'analyse de stabilité de ces systèmes linéaires de dimension infinie et s'appuient sur une algèbre d'opérateurs plutôt que matricielle. Cependant, ces résultats d'existence soulèvent un problème de constructibilité numérique. Lors de l'implémentation, une approximation est réalisée et les résultats sont conservatifs. La conception d'outils numériques menant à des garanties de stabilité pour lesquelles le degré de conservatisme est évalué et maîtrisé est alors un enjeu majeur. Comment développer des critères numériques fiables permettant de statuer sur la stabilité ou l'instabilité des systèmes linéaires de dimension infinie ? Afin de répondre à cette question, nous proposons ici une nouvelle méthode générique qui se décompose en deux temps. D'abord, sous l'angle de l'approximation sur les polynômes de Legendre, des modèles augmentés sont construits et découpent le système original en deux blocs : d'une part, un système de dimension finie approximant est isolé, d'autre part, l'erreur de troncature de dimension infinie est conservée et modélisée. Ensuite, des outils fréquentiels et temporels de dimension finie sont déployés afin de proposer des critères de stabilité plus ou moins coûteux numériquement en fonction de l'ordre d'approximation choisi. En fréquentiel, à l'aide du théorème du petit gain, des conditions suffisantes de stabilité sont obtenues. En temporel, à l'aide du théorème de Lyapunov, une sous-estimation des régions de stabilité est proposée sous forme d'inégalité matricielle linéaire et une sur-estimation sous forme de test de positivité. Nos deux études de cas ont ainsi été traitées à l'aide de cette méthodologie générale. Le principal résultat obtenu concerne le cas des systèmes EDO-transport interconnectés, pour lequel l'approximation et l'analyse de stabilité à l'aide des polynômes de Legendre mène à des estimations des régions de stabilité qui convergent exponentiellement vite. La méthode développée dans ce manuscrit peut être adaptée à d'autres types d'approximations et exportée à d'autres systèmes linéaires de dimension infinie. Ce travail ouvre ainsi la voie à l'obtention de conditions nécessaires et suffisantes de stabilité de dimension finie pour les systèmes de dimension infinie.Infinite dimensional systems allow to model a large panel of physical phenomena for which the state variables evolve both temporally and spatially. This manuscript deals with the evaluation of the stability of their equilibrium point. Two case studies are treated in particular: the stability analysis of ODE-transport, and ODE-reaction-diffusion interconnected systems. Theoretical tools exist for the stability analysis of these infinite-dimensional linear systems and are based on an operator algebra rather than a matrix algebra. However, these existence results raise a problem of numerical constructibility. During implementation, an approximation is performed and the results are conservative. The design of numerical tools leading to stability guarantees for which the degree of conservatism is evaluated and controlled is then a major issue. How can we develop reliable numerical criteria to rule on the stability or instability of infinite-dimensional linear systems? In order to answer this question, one proposes here a new generic method, which is decomposed in two steps. First, from the perspective of Legendre polynomials approximation, augmented models are built and split the original system into two blocks: on the one hand, a finite-dimensional approximated system is isolated, on the other hand, the infinite-dimensional truncation error is preserved and modeled. Then, frequency and time tools of finite dimension are deployed in order to propose stability criteria that have high or low numerical load depending on the approximated order. In frequencies, with the aid of the small gain theorem, sufficient stability conditions are obtained. In temporal, with the aid of the Lyapunov theorem, an under estimate of the stability regions is proposed as a linear matrix inequality and an over estimate as a positivity test. Our two case studies have been treated with this general methodology. The main result concerns the case of ODE-transport interconnected systems, for which the approximation and stability analysis using Legendre polynomials leads to exponentially fast converging estimates of stability regions. The method developed in this manuscript can be adapted to other types of approximations and exported to other infinite-dimensional linear systems. Thus, this work opens the way to obtain necessary and sufficient finite-dimensional conditions of stability for infinite-dimensional systems
    • …
    corecore