5,429 research outputs found

    Balanced truncation for linear switched systems

    Full text link
    In this paper, we present a theoretical analysis of the model reduction algorithm for linear switched systems. This algorithm is a reminiscence of the balanced truncation method for linear parameter varying systems. Specifically in this paper, we provide a bound on the approximation error in L2 norm for continuous-time and l2 norm for discrete-time linear switched systems. We provide a system theoretic interpretation of grammians and their singular values. Furthermore, we show that the performance of bal- anced truncation depends only on the input-output map and not on the choice of the state-space representation. For a class of stable discrete-time linear switched systems (so called strongly stable systems), we define nice controllability and nice observability grammians, which are genuinely related to reachability and controllability of switched systems. In addition, we show that quadratic stability and LMI estimates of the L2 and l2 gains depend only on the input-output map.Comment: We have corrected a number of typos and inconsistencies. In addition, we added new results in Theorem

    Stability of uniformly bounded switched systems and Observability

    Full text link
    This paper mainly deals with switched linear systems defined by a pair of Hurwitz matrices that share a common but not strict quadratic Lyapunov function. Its aim is to give sufficient conditions for such a system to be GUAS.We show that this property of being GUAS is equivalent to the uniform observability on [0,+∞)[0,+\infty) of a bilinear system defined on a subspace whose dimension is in most cases much smaller than the dimension of the switched system.Some sufficient conditions of uniform asymptotic stability are then deduced from the equivalence theorem, and illustrated by examples.The results are partially extended to nonlinear analytic systems

    Midpoint based balanced truncation for switched linear systems with known switching signal

    Get PDF
    We propose a novel model reduction approachfor switched linear systems with known switching signal. Theclass of considered systems encompasses switched systems withmode-dependent state-dimension as well as impulsive systems.Our method is based on a suitable definition of (time-varying)reachability and observability Gramians and we show that theseGramians satisfy precise interpretations in terms of input andoutput energy. Based on balancing the midpoint Gramians, wepropose a piecewise-constant projection based model reductionresulting in a switched linear system of smaller size

    Observability of Switched Linear Systems in Continuous Time

    Get PDF
    We study continuous-time switched linear systems with unobserved and exogeneous mode signals. We analyze the observability of the initial state and initial mode under arbitrary switching, and characterize both properties in both autonomous and non-autonomous cases

    Model Reduction by Moment Matching for Linear Switched Systems

    Get PDF
    Two moment-matching methods for model reduction of linear switched systems (LSSs) are presented. The methods are similar to the Krylov subspace methods used for moment matching for linear systems. The more general one of the two methods, is based on the so called "nice selection" of some vectors in the reachability or observability space of the LSS. The underlying theory is closely related to the (partial) realization theory of LSSs. In this paper, the connection of the methods to the realization theory of LSSs is provided, and algorithms are developed for the purpose of model reduction. Conditions for applicability of the methods for model reduction are stated and finally the results are illustrated on numerical examples.Comment: Sent for publication in IEEE TAC, on October 201

    Reduced realizations and model reduction for switched linear systems:a time-varying approach

    Get PDF
    In the last decades, switched systems gained much interest as a modeling framework in many applications. Due to a large number of subsystems and their high-dimensional dynamics, such systems result in high complexity and challenges. This motivates to find suitable reduction methods that produce simplified models which can be used in simulation and optimization instead of the original (large) system. In general, the study aims to find a reduced model for a given switched system with a fixed switching signal and known mode sequence. This thesis concerns first the reduced realization of switched systems with known mode sequence which has the same input-output behavior as original switched systems. It is conjectured that the proposed reduced system has the smallest order for almost all switching time duration. Secondly, a model reduction method is proposed for switched systems with known switching signals which provide a good model with suitable thresholds for the given switched system. The quantitative information for each mode is carried out by defining suitable Gramians and, these Gramians are exploited at the midpoint of the given switching time duration. Finally, balanced truncation leads to a modewise reduction. Later, a model reduction method for switched differential-algebraic equations in continuous time is proposed. Thereto, a switched linear system with jumps and impulses is constructed which has the identical input-output behavior as original systems. Finally, a model reduction approach for singular linear switched systems in discrete time is studied. The choice of initial/final values of the reachability and observability Gramians are also investigated
    • …
    corecore