3,548 research outputs found

    Opacity with Orwellian Observers and Intransitive Non-interference

    Full text link
    Opacity is a general behavioural security scheme flexible enough to account for several specific properties. Some secret set of behaviors of a system is opaque if a passive attacker can never tell whether the observed behavior is a secret one or not. Instead of considering the case of static observability where the set of observable events is fixed off line or dynamic observability where the set of observable events changes over time depending on the history of the trace, we consider Orwellian partial observability where unobservable events are not revealed unless a downgrading event occurs in the future of the trace. We show how to verify that some regular secret is opaque for a regular language L w.r.t. an Orwellian projection while it has been proved undecidable even for a regular language L w.r.t. a general Orwellian observation function. We finally illustrate relevancy of our results by proving the equivalence between the opacity property of regular secrets w.r.t. Orwellian projection and the intransitive non-interference property

    Efficient Model Learning for Human-Robot Collaborative Tasks

    Get PDF
    We present a framework for learning human user models from joint-action demonstrations that enables the robot to compute a robust policy for a collaborative task with a human. The learning takes place completely automatically, without any human intervention. First, we describe the clustering of demonstrated action sequences into different human types using an unsupervised learning algorithm. These demonstrated sequences are also used by the robot to learn a reward function that is representative for each type, through the employment of an inverse reinforcement learning algorithm. The learned model is then used as part of a Mixed Observability Markov Decision Process formulation, wherein the human type is a partially observable variable. With this framework, we can infer, either offline or online, the human type of a new user that was not included in the training set, and can compute a policy for the robot that will be aligned to the preference of this new user and will be robust to deviations of the human actions from prior demonstrations. Finally we validate the approach using data collected in human subject experiments, and conduct proof-of-concept demonstrations in which a person performs a collaborative task with a small industrial robot

    Synthesis of Covert Actuator Attackers for Free

    Full text link
    In this paper, we shall formulate and address a problem of covert actuator attacker synthesis for cyber-physical systems that are modelled by discrete-event systems. We assume the actuator attacker partially observes the execution of the closed-loop system and is able to modify each control command issued by the supervisor on a specified attackable subset of controllable events. We provide straightforward but in general exponential-time reductions, due to the use of subset construction procedure, from the covert actuator attacker synthesis problems to the Ramadge-Wonham supervisor synthesis problems. It then follows that it is possible to use the many techniques and tools already developed for solving the supervisor synthesis problem to solve the covert actuator attacker synthesis problem for free. In particular, we show that, if the attacker cannot attack unobservable events to the supervisor, then the reductions can be carried out in polynomial time. We also provide a brief discussion on some other conditions under which the exponential blowup in state size can be avoided. Finally, we show how the reduction based synthesis procedure can be extended for the synthesis of successful covert actuator attackers that also eavesdrop the control commands issued by the supervisor.Comment: The paper has been accepted for the journal Discrete Event Dynamic System
    • …
    corecore