847 research outputs found

    Observability and Decentralized Control of Fuzzy Discrete Event Systems

    Full text link
    Fuzzy discrete event systems as a generalization of (crisp) discrete event systems have been introduced in order that it is possible to effectively represent uncertainty, imprecision, and vagueness arising from the dynamic of systems. A fuzzy discrete event system has been modelled by a fuzzy automaton; its behavior is described in terms of the fuzzy language generated by the automaton. In this paper, we are concerned with the supervisory control problem for fuzzy discrete event systems with partial observation. Observability, normality, and co-observability of crisp languages are extended to fuzzy languages. It is shown that the observability, together with controllability, of the desired fuzzy language is a necessary and sufficient condition for the existence of a partially observable fuzzy supervisor. When a decentralized solution is desired, it is proved that there exist local fuzzy supervisors if and only if the fuzzy language to be synthesized is controllable and co-observable. Moreover, the infimal controllable and observable fuzzy superlanguage, and the supremal controllable and normal fuzzy sublanguage are also discussed. Simple examples are provided to illustrate the theoretical development.Comment: 14 pages, 1 figure. to be published in the IEEE Transactions on Fuzzy System

    Diagnosability of Fuzzy Discrete Event Systems

    Full text link
    In order to more effectively cope with the real-world problems of vagueness, {\it fuzzy discrete event systems} (FDESs) were proposed recently, and the supervisory control theory of FDESs was developed. In view of the importance of failure diagnosis, in this paper, we present an approach of the failure diagnosis in the framework of FDESs. More specifically: (1) We formalize the definition of diagnosability for FDESs, in which the observable set and failure set of events are {\it fuzzy}, that is, each event has certain degree to be observable and unobservable, and, also, each event may possess different possibility of failure occurring. (2) Through the construction of observability-based diagnosers of FDESs, we investigate its some basic properties. In particular, we present a necessary and sufficient condition for diagnosability of FDESs. (3) Some examples serving to illuminate the applications of the diagnosability of FDESs are described. To conclude, some related issues are raised for further consideration.Comment: 14 pages; revisions have been mad

    State-Based Control of Fuzzy Discrete Event Systems

    Full text link
    To effectively represent possibility arising from states and dynamics of a system, fuzzy discrete event systems as a generalization of conventional discrete event systems have been introduced recently. Supervisory control theory based on event feedback has been well established for such systems. Noting that the system state description, from the viewpoint of specification, seems more convenient, we investigate the state-based control of fuzzy discrete event systems in this paper. We first present an approach to finding all fuzzy states that are reachable by controlling the system. After introducing the notion of controllability for fuzzy states, we then provide a necessary and sufficient condition for a set of fuzzy states to be controllable. We also find that event-based control and state-based control are not equivalent and further discuss the relationship between them. Finally, we examine the possibility of driving a fuzzy discrete event system under control from a given initial state to a prescribed set of fuzzy states and then keeping it there indefinitely.Comment: 14 double column pages; 4 figures; to be published in the IEEE Transactions on Systems, Man, and Cybernetics--Part B: Cybernetic

    Supervisory Control of Fuzzy Discrete Event Systems: A Formal Approach

    Full text link
    Fuzzy {\it discrete event systems} (DESs) were proposed recently by Lin and Ying [19], which may better cope with the real-world problems with fuzziness, impreciseness, and subjectivity such as those in biomedicine. As a continuation of [19], in this paper we further develop fuzzy DESs by dealing with supervisory control of fuzzy DESs. More specifically, (i) we reformulate the parallel composition of crisp DESs, and then define the parallel composition of fuzzy DESs that is equivalent to that in [19]; {\it max-product} and {\it max-min} automata for modeling fuzzy DESs are considered; (ii) we deal with a number of fundamental problems regarding supervisory control of fuzzy DESs, particularly demonstrate controllability theorem and nonblocking controllability theorem of fuzzy DESs, and thus present the conditions for the existence of supervisors in fuzzy DESs; (iii) we analyze the complexity for presenting a uniform criterion to test the fuzzy controllability condition of fuzzy DESs modeled by max-product automata; in particular, we present in detail a general computing method for checking whether or not the fuzzy controllability condition holds, if max-min automata are used to model fuzzy DESs, and by means of this method we can search for all possible fuzzy states reachable from initial fuzzy state in max-min automata; also, we introduce the fuzzy nn-controllability condition for some practical problems; (iv) a number of examples serving to illustrate the applications of the derived results and methods are described; some basic properties related to supervisory control of fuzzy DESs are investigated. To conclude, some related issues are raised for further consideration

    Supervisory control of fuzzy discrete event systems with applications to mobile robotics

    Get PDF
    Fuzzy Discrete Event Systems (FDES) were proposed in the literature for modeling and control of a class of event driven and asynchronous dynamical systems that are affected by deterministic uncertainties and vagueness on their representations. In contrast to classical crisp Discrete Event Systems (DES), which have been explored to a sufficient extent in the past, an in-depth study of FDES is yet to be performed, and their feasible real-time application areas need to be further identified. This research work intends to address the supervisory control problem of FDES broadly, while formulating new knowledge in the area. Moreover, it examines the possible applications of these developments in the behavior-based mobile robotics domain. An FDES-based supervisory control framework to facilitate the behavior-based control of a mobile robot is developed at first. The proposed approach is modular in nature and supports behavior integration without making state explosion. Then, this architecture is implemented in simulation as well as in real-time on a mobile robot moving in unstructured environments, and the feasibility of the approach is validated. A general decentralized supervisory control theory of FDES is then established for better information association and ambiguity management in large-scale and distributed systems, while providing less complexity of control computation. Furthermore, using the proposed architecture, simulation and real-time experiments of a tightly-coupled multi-robot object manipulation task are performed. The results are compared with centralized FDES-based and decentralized DES-based approaches. -- A decentralized modular supervisory control theory of FDES is then established for complex systems having a number of modules that are concurrently operating and also containing multiple interactions. -- Finally, a hierarchical supervisory control theory of FDES is established to resolve the control complexity of a large-scale compound system by modularizing the system vertically and assigning multi-level supervisor hierarchies. As a proof-of-concept example to the established theory, a mobile robot navigation problem is discussed. This research work will contribute to the literature by developing novel knowledge and related theories in the areas of decentralized, modular and hierarchical supervisory control of FDES. It also investigates the applicability of these contributions in the mobile robotics arena

    Engineering Emergence: A Survey on Control in the World of Complex Networks

    Get PDF
    Complex networks make an enticing research topic that has been increasingly attracting researchers from control systems and various other domains over the last two decades. The aim of this paper was to survey the interest in control related to complex networks research over time since 2000 and to identify recent trends that may generate new research directions. The survey was performed for Web of Science, Scopus, and IEEEXplore publications related to complex networks. Based on our findings, we raised several questions and highlighted ongoing interests in the control of complex networks.publishedVersio

    Detectability Of Fuzzy Discrete Event Systems

    Get PDF
    Dynamic systems that can be modeled in terms of discrete states and a synchronous events are known as discrete event systems (DES). A DES is defined in terms of states, events, transition dynamics, and initial state. Knowing the system’s state is crucial in many applications for certain actions (events) to be taken. A DES system is considered a fuzzy discrete event system (FDES) if its states and events are vague in nature; for such systems, the system can be in more than one state at the same time with different degrees of possibility (membership). In this research we introduce a fuzzy discrete event system with constraints (FDESwC) and investigate its detectabilities. This research aims to address the gap in previous studies and extend existing definitions of detectability of DES to include the detectability in systems with substantial vagueness such as FDES. These definitions are first reformulated to introduce N-detectability for DES, which are further extended to define four main types of detectabilities for FDES: strong N-detectability, (weak) N-detectability, strong periodic N-detectability, and (weak) periodic N-detectability. We first partition the FDES into trajectories of a length dictated by the depth of the event’s string (length of the event sequence); each trajectory consists of a number of nodes, which are further investigated for detectability by examining them against the newly introduced certainty criterion. Matrix computation algorithms and fuzzy logic operations are adopted to calculate the state estimates based on the current state and the occurring events. Vehicle dynamics control example is used to demonstrate the practical aspect of developed theorems in real-world applications
    • …
    corecore