20 research outputs found

    Hybrid Cloud Workload Monitoring as a Service

    Get PDF
    Cloud computing and cloud-based hosting has become embedded in our daily lives. It is imperative for cloud providers to make sure all services used by both enterprises and consumers have high availability and elasticity to prevent any downtime, which impacts negatively for any business. To ensure cloud infrastructures are working reliably, cloud monitoring becomes an essential need for both businesses, the provider and the consumer. This thesis project reports on the need of efficient scalable monitoring, enumerating the necessary types of metrics of interest to be collected. Current understanding of various architectures designed to collect, store and process monitoring data to provide useful insight is surveyed. The pros and cons of each architecture and when such architecture should be used, based on deployment style and strategy, is also reported in the survey. Finally, the essential characteristics of a cloud monitoring system, primarily the features they host to operationalize an efficient monitoring framework, are provided as part of this review. While its apparent that embedded and decentralized architectures are the current favorite in the industry, service-oriented architectures are gaining traction. This project aims to build a light-weight, scalable, embedded monitoring tool which collects metrics at different layers of the cloud stack and aims at achieving correlation in resource-consumption between layers. Future research can be conducted on efficient machine learning models used on the monitoring data to predict resource usage spikes pre-emptively

    Chaos Engineering for Microservices

    Get PDF
    Chaos engineering is a relatively new concept that is growing in popularity as it helps companies to be more resilient in the face of unexpected networking or software failure. The idea behind chaos engineering is that if you can create controlled failures, you can discover where your system is weak and then fix those weaknesses before something happens to your production environment. This research has been done on microservices, which are small pieces of code that perform specific tasks on behalf of a larger application. Microservices are often hosted on different servers and run by different teams, so they are much more fragile than monolithic applications. Microservices also tend to be written in different languages, which makes them more difficult to understand and test for bugs. The goal of this study was to determine whether microservices can be made more resilient through chaos engineering or not; specifically, if it is possible to find out what kinds of failures occur most often and how long they take to resolve

    Performance Evaluation of Serverless Applications and Infrastructures

    Get PDF
    Context. Cloud computing has become the de facto standard for deploying modern web-based software systems, which makes its performance crucial to the efficient functioning of many applications. However, the unabated growth of established cloud services, such as Infrastructure-as-a-Service (IaaS), and the emergence of new serverless services, such as Function-as-a-Service (FaaS), has led to an unprecedented diversity of cloud services with different performance characteristics. Measuring these characteristics is difficult in dynamic cloud environments due to performance variability in large-scale distributed systems with limited observability.Objective. This thesis aims to enable reproducible performance evaluation of serverless applications and their underlying cloud infrastructure.Method. A combination of literature review and empirical research established a consolidated view on serverless applications and their performance. New solutions were developed through engineering research and used to conduct performance benchmarking field experiments in cloud environments.Findings. The review of 112 FaaS performance studies from academic and industrial sources found a strong focus on a single cloud platform using artificial micro-benchmarks and discovered that most studies do not follow reproducibility principles on cloud experimentation. Characterizing 89 serverless applications revealed that they are most commonly used for short-running tasks with low data volume and bursty workloads. A novel trace-based serverless application benchmark shows that external service calls often dominate the median end-to-end latency and cause long tail latency. The latency breakdown analysis further identifies performance challenges of serverless applications, such as long delays through asynchronous function triggers, substantial runtime initialization for coldstarts, increased performance variability under bursty workloads, and heavily provider-dependent performance characteristics. The evaluation of different cloud benchmarking methodologies has shown that only selected micro-benchmarks are suitable for estimating application performance, performance variability depends on the resource type, and batch testing on the same instance with repetitions should be used for reliable performance testing.Conclusions. The insights of this thesis can guide practitioners in building performance-optimized serverless applications and researchers in reproducibly evaluating cloud performance using suitable execution methodologies and different benchmark types

    Application of Chaos Engineering Principles to Edge Computing Environments

    Get PDF
    En este proyecto, se ha investigado la aplicabilidad del Chaos Engineering sobre el Edge Computing y se ha realizado un caso pr谩ctico como demostraci贸n. En primer lugar, se ha realizado una investigaci贸n sobre las estrategias Chaos Engineering utilizadas hasta la fecha y las aplicaciones de este. De esta forma, hemos obtenido una visi贸n bastante amplia y profunda de la disciplina. En segundo lugar, se han analizado las estructuras Edge, siguiente paso a las tecnolog铆as Cloud. Se han investigado desde los fundamentos de esta hasta su estructura y la arquitectura interna de los componentes que la forman. En consecuencia, apreciamos el potencial de estas estructuras, y comenzamos a investigar acerca de los desaf铆os de seguridad que genera este tipo de plataformas, y la aplicabilidad del Chaos Engineering sobre ellas. Para ello, exploramos el uso del Chaos Engineering sobre el Cloud Computing y comenzamos a abstraer los conceptos sobre el Edge Computing. Finalmente, hemos generado un caso pr谩ctico en el que desarrollamos y ejecutamos una estrategia Chaos Engineering para encontrar los problemas de seguridad, tanto sobre la plataforma Edge Computing como sobre la aplicaci贸n desplegada, y en consecuencia solucionar los fallos obtenidos a trav茅s de las conclusiones aportadas por la experimentaci贸n

    Design and Implementation of HD Wireless Video Transmission System Based on Millimeter Wave

    Get PDF
    With the improvement of optical fiber communication network construction and the improvement of camera technology, the video that the terminal can receive becomes clearer, with resolution up to 4K. Although optical fiber communication has high bandwidth and fast transmission speed, it is not the best solution for indoor short-distance video transmission in terms of cost, laying difficulty and speed. In this context, this thesis proposes to design and implement a multi-channel wireless HD video transmission system with high transmission performance by using the 60GHz millimeter wave technology, aiming to improve the bandwidth from optical nodes to wireless terminals and improve the quality of video transmission. This thesis mainly covers the following parts: (1) This thesis implements wireless video transmission algorithm, which is divided into wireless transmission algorithm and video transmission algorithm, such as 64QAM modulation and demodulation algorithm, H.264 video algorithm and YUV420P algorithm. (2) This thesis designs the hardware of wireless HD video transmission system, including network processing unit (NPU) and millimeter wave module. Millimeter wave module uses RWM6050 baseband chip and TRX-BF01 rf chip. This thesis will design the corresponding hardware circuit based on the above chip, such as 10Gb/s network port, PCIE. (3) This thesis realizes the software design of wireless HD video transmission system, selects FFmpeg and Nginx to build the sending platform of video transmission system on NPU, and realizes video multiplex transmission with Docker. On the receiving platform of video transmission, FFmpeg and Qt are selected to realize video decoding, and OpenGL is combined to realize video playback. (4) Finally, the thesis completed the wireless HD video transmission system test, including pressure test, Web test and application scenario test. It has been verified that its HD video wireless transmission system can transmit HD VR video with three-channel bit rate of 1.2GB /s, and its rate can reach up to 3.7GB /s, which meets the research goal

    Supercomputing Frontiers

    Get PDF
    This open access book constitutes the refereed proceedings of the 7th Asian Conference Supercomputing Conference, SCFA 2022, which took place in Singapore in March 2022. The 8 full papers presented in this book were carefully reviewed and selected from 21 submissions. They cover a range of topics including file systems, memory hierarchy, HPC cloud platform, container image configuration workflow, large-scale applications, and scheduling
    corecore