1,205 research outputs found

    Strong connections between quantum encodings, non-locality and quantum cryptography

    Get PDF
    Encoding information in quantum systems can offer surprising advantages but at the same time there are limitations that arise from the fact that measuring an observable may disturb the state of the quantum system. In our work, we provide an in-depth analysis of a simple question: What happens when we perform two measurements sequentially on the same quantum system? This question touches upon some fundamental properties of quantum mechanics, namely the uncertainty principle and the complementarity of quantum measurements. Our results have interesting consequences, for example they can provide a simple proof of the optimal quantum strategy in the famous Clauser-Horne-Shimony-Holt game. Moreover, we show that the way information is encoded in quantum systems can provide a different perspective in understanding other fundamental aspects of quantum information, like non-locality and quantum cryptography. We prove some strong equivalences between these notions and provide a number of applications in all areas.Comment: Version 3. Previous title: "Oblivious transfer, the CHSH game, and quantum encodings

    Oblivious transfer and quantum channels

    Full text link
    We show that oblivious transfer can be seen as the classical analogue to a quantum channel in the same sense as non-local boxes are for maximally entangled qubits.Comment: Invited Paper at the 2006 IEEE Information Theory Workshop (ITW 2006

    Tsirelson's Bound Prohibits Communication Through a Disconnected Channel

    Full text link
    Why does nature only allow nonlocal correlations up to Tsirelson's bound and not beyond? We construct a channel whose input is statistically independent of its output, but through which communication is nevertheless possible if and only if Tsirelson's bound is violated. This provides a statistical justification for Tsirelson's bound on nonlocal correlations in a bipartite setting.Comment: 9 pages, 2 figures. Title and abstract modified, exposition simplifie
    corecore