203 research outputs found

    Performance Evaluation of XY and XTRANC Routing Algorithm for Network on Chip and Implementation using DART Simulator

    Get PDF
    In today’s world Network on Chip(NoC) is one of the most efficient on chip communication platform for System on Chip where a large amount of computational and storage blocks are integrated on a single chip. NoCs are scalable and have tackled the short commings of SoCs . In the first part of this project the basics of NoCs is explained which includes why we should use NoC , how to implement NoC ,various blocks of NoCs .The next part of the project deals with the implementation of XY routing algorithm in mesh (3*3) and mesh (4*4) network topologies. The throughput and latency curves for both the topologies were found and a through comparison was done by varying the no of virtual cannels. In the next part an improvised routing algorithm known as the extended torus(XTRANC) routing algorithm for NoCs implementation is explained. This algorithm is designed for inner torus mesh networks and provides better performance than usual routing algorithms. It has been implemented using the CONNECT simulator. Then the DART simulator was explored and two important components namely the flitqueue and the traffic generator was designed using this simulator

    A study of recent contributions on simulation tools for Network-on-Chip (NoC)

    Get PDF
    The growth in the number of Intellectual Properties (IPs) or the number of cores on the same chip becomes a critical issue in System-on-Chip (SoC) due to the intra-communication problem between the chip elements. As a result, Network-on-Chip (NoC) has emerged as a new system architecture to overcome intra-communication issues. New approaches and methodologies have been developed by many researchers to improve NoC. Also, many NoC simulation tools have been proposed and adopted by both academia and industry. This paper presents a study of recent contributions on simulation tools for NoC. Furthermore, an overview of NoC is covered as well as a comparison between some NoC simulators to help facilitate research in on-chip communication

    Submicron Systems Architecture Project: Semiannual Technical Report

    Get PDF
    No abstract available

    Heracles: Fully Synthesizable Parameterized MIPS-Based Multicore System

    Get PDF
    Heracles is an open-source complete multicore system written in Verilog. It is fully parameterized and can be reconfigured and synthesized into different topologies and sizes. Each processing node has a 7-stage pipeline, fully bypassed, microprocessor running the MIPS-III ISA, a 4-stage input-buffer, virtual-channel router, and a local variable-size shared memory. Our design is highly modular with clear interfaces between the core, the memory hierarchy, and the on-chip network. In the baseline design, the microprocessor is attached to two caches, one instruction cache and one data cache, which are oblivious to the global memory organization. The memory system in Heracles can be configured as one single global shared memory (SM), or distributed shared memory (DSM), or any combination thereof. Each core is connected to the rest of the network of processors by a parameterized, realistic, wormhole router. We show different topology configurations of the system, and their synthesis results on the Xilinx Virtex-5 LX330T FPGA board. We also provide a small MIPS cross-compiler toolchain to assist in developing software for Heracles

    Scalable, accurate multicore simulation in the 1000-core era

    Get PDF
    We present HORNET, a parallel, highly configurable, cycle-level multicore simulator based on an ingress-queued worm-hole router NoC architecture. The parallel simulation engine offers cycle-accurate as well as periodic synchronization; while preserving functional accuracy, this permits tradeoffs between perfect timing accuracy and high speed with very good accuracy. When run on 6 separate physical cores on a single die, speedups can exceed a factor of over 5, and when run on a two-die 12-core system with 2-way hyperthreading, speedups exceed 11 ×. Most hardware parameters are configurable, including memory hierarchy, interconnect geometry, bandwidth, crossbar dimensions, and parameters driving power and thermal effects. A highly parametrized table-based NoC design allows a variety of routing and virtual channel allocation algorithms out of the box, ranging from simple DOR routing to complex Valiant, ROMM, or PROM schemes, BSOR, and adaptive routing. HORNET can run in network-only mode using synthetic traffic or traces, directly emulate a MIPS-based multicore, or function as the memory subsystem for native applications executed under the Pin instrumentation tool. HORNET is freely available under the open-source MIT license at http://csg.csail.mit.edu/hornet/

    The Effect Of Hot Spots On The Performance Of Mesh--Based Networks

    Get PDF
    Direct network performance is affected by different design parameters which include number of virtual channels, number of ports, routing algorithm, switching technique, deadlock handling technique, packet size, and buffer size. Another factor that affects network performance is the traffic pattern. In this thesis, we study the effect of hotspot traffic on system performance. Specifically, we study the effect of hotspot factor, hotspot number, and hot spot location on the performance of mesh-based networks. Simulations are run on two network topologies, both the mesh and torus. We pay more attention to meshes because they are widely used in commercial machines. Comparisons between oblivious wormhole switching and chaotic packet switching are reported. Overall packet switching proved to be more efficient in terms of throughput when compared to wormhole switching. In the case of uniform random traffic, it is shown that the differences between chaotic and oblivious routing are indistinguishable. Networks with low number of hotspots show better performance. As the number of hotspots increases network latency tends to increase. It is shown that when the hotspot factor increases, performance of packet switching is better than that of wormhole switching. It is also shown that the location of hotspots affects network performance particularly with the oblivious routers since their achieved latencies proved to be more vulnerable to changes in the hotspot location. It is also shown that the smaller the size of the network the earlier network saturation occurs. Further, it is shown that the chaos router’s adaptivity is useful in this case. Finally, for tori, performance is not greatly affected by hotspot presence. This is mostly due to the symmetric nature of tori

    On Fault Tolerance Methods for Networks-on-Chip

    Get PDF
    Technology scaling has proceeded into dimensions in which the reliability of manufactured devices is becoming endangered. The reliability decrease is a consequence of physical limitations, relative increase of variations, and decreasing noise margins, among others. A promising solution for bringing the reliability of circuits back to a desired level is the use of design methods which introduce tolerance against possible faults in an integrated circuit. This thesis studies and presents fault tolerance methods for network-onchip (NoC) which is a design paradigm targeted for very large systems-onchip. In a NoC resources, such as processors and memories, are connected to a communication network; comparable to the Internet. Fault tolerance in such a system can be achieved at many abstraction levels. The thesis studies the origin of faults in modern technologies and explains the classification to transient, intermittent and permanent faults. A survey of fault tolerance methods is presented to demonstrate the diversity of available methods. Networks-on-chip are approached by exploring their main design choices: the selection of a topology, routing protocol, and flow control method. Fault tolerance methods for NoCs are studied at different layers of the OSI reference model. The data link layer provides a reliable communication link over a physical channel. Error control coding is an efficient fault tolerance method especially against transient faults at this abstraction level. Error control coding methods suitable for on-chip communication are studied and their implementations presented. Error control coding loses its effectiveness in the presence of intermittent and permanent faults. Therefore, other solutions against them are presented. The introduction of spare wires and split transmissions are shown to provide good tolerance against intermittent and permanent errors and their combination to error control coding is illustrated. At the network layer positioned above the data link layer, fault tolerance can be achieved with the design of fault tolerant network topologies and routing algorithms. Both of these approaches are presented in the thesis together with realizations in the both categories. The thesis concludes that an optimal fault tolerance solution contains carefully co-designed elements from different abstraction levelsSiirretty Doriast
    corecore