46,614 research outputs found

    Using Kernel Perceptrons to Learn Action Effects for Planning

    Get PDF
    Abstract — We investigate the problem of learning action effects in STRIPS and ADL planning domains. Our approach is based on a kernel perceptron learning model, where action and state information is encoded in a compact vector representation as input to the learning mechanism, and resulting state changes are produced as output. Empirical results of our approach indicate efficient training and prediction times, with low average error rates (< 3%) when tested on STRIPS and ADL versions of an object manipulation scenario. This work is part of a project to integrate machine learning techniques with a planning system, as part of a larger cognitive architecture linking a highlevel reasoning component with a low-level robot/vision system. I

    Encapsulation and Aggregation

    Get PDF
    A notion of object ownership is introduced as a solution to difficult problems of specifying and reasoning about complex linked structures and of modeling aggregates (composit objects). Syntax and semantics are provided for extending Eiffel with language support for object ownership annotation and checking. The ideas also apply to other OOPLs such as C++

    A Type-Safe Model of Adaptive Object Groups

    Full text link
    Services are autonomous, self-describing, technology-neutral software units that can be described, published, discovered, and composed into software applications at runtime. Designing software services and composing services in order to form applications or composite services requires abstractions beyond those found in typical object-oriented programming languages. This paper explores service-oriented abstractions such as service adaptation, discovery, and querying in an object-oriented setting. We develop a formal model of adaptive object-oriented groups which offer services to their environment. These groups fit directly into the object-oriented paradigm in the sense that they can be dynamically created, they have an identity, and they can receive method calls. In contrast to objects, groups are not used for structuring code. A group exports its services through interfaces and relies on objects to implement these services. Objects may join or leave different groups. Groups may dynamically export new interfaces, they support service discovery, and they can be queried at runtime for the interfaces they support. We define an operational semantics and a static type system for this model of adaptive object groups, and show that well-typed programs do not cause method-not-understood errors at runtime.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432

    On Role Logic

    Full text link
    We present role logic, a notation for describing properties of relational structures in shape analysis, databases, and knowledge bases. We construct role logic using the ideas of de Bruijn's notation for lambda calculus, an encoding of first-order logic in lambda calculus, and a simple rule for implicit arguments of unary and binary predicates. The unrestricted version of role logic has the expressive power of first-order logic with transitive closure. Using a syntactic restriction on role logic formulas, we identify a natural fragment RL^2 of role logic. We show that the RL^2 fragment has the same expressive power as two-variable logic with counting C^2 and is therefore decidable. We present a translation of an imperative language into the decidable fragment RL^2, which allows compositional verification of programs that manipulate relational structures. In addition, we show how RL^2 encodes boolean shape analysis constraints and an expressive description logic.Comment: 20 pages. Our later SAS 2004 result builds on this wor
    corecore