55,665 research outputs found

    Derivative-free nonlinear optimization filter simplex

    Get PDF
    The filter method is a technique for solving nonlinear programming problems. The filter algorithm has two phases in each iteration. The first one reduces a measure of infeasibility, while in the second the objective function value is reduced. In real optimization problems, usually the objective function is not differentiable or its derivatives are unknown. In these cases it becomes essential to use optimization methods where the calculation of the derivatives or the verification of their existence is not necessary: direct search methods or derivative-free methods are examples of such techniques. In this work we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of simplex and filter methods. This method neither computes nor approximates derivatives, penalty constants or Lagrange multipliers

    Derivative-free optimization and filter methods to solve nonlinear constrained problems

    Get PDF
    In real optimization problems, usually the analytical expression of the objective function is not known, nor its derivatives, or they are complex. In these cases it becomes essential to use optimization methods where the calculation of the derivatives, or the verification of their existence, is not necessary: the Direct Search Methods or Derivative-free Methods are one solution. When the problem has constraints, penalty functions are often used. Unfortunately the choice of the penalty parameters is, frequently, very difficult, because most strategies for choosing it are heuristics strategies. As an alternative to penalty function appeared the filter methods. A filter algorithm introduces a function that aggregates the constrained violations and constructs a biobjective problem. In this problem the step is accepted if it either reduces the objective function or the constrained violation. This implies that the filter methods are less parameter dependent than a penalty function. In this work, we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of the simplex method and filter methods. This method does not compute or approximate any derivatives, penalty constants or Lagrange multipliers. The basic idea of simplex filter algorithm is to construct an initial simplex and use the simplex to drive the search. We illustrate the behavior of our algorithm through some examples. The proposed methods were implemented in Java

    Inexact restoration method for derivative-free optimization with smooth constraints

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)A new method is introduced for solving constrained optimization problems in which the derivatives of the constraints are available but the derivatives of the objective function are not. The method is based on the inexact restoration framework, by means of which each iteration is divided in two phases. In the first phase one considers only the constraints, in order to improve feasibility. In the second phase one minimizes a suitable objective function subject to a linear approximation of the constraints. The second phase must be solved using derivative-free methods. An algorithm introduced recently by Kolda, Lewis, and Torczon for linearly constrained derivative-free optimization is employed for this purpose. Under usual assumptions, convergence to stationary points is proved. A computer implementation is described and numerical experiments are presented.A new method is introduced for solving constrained optimization problems in which the derivatives of the constraints are available but the derivatives of the objective function are not. The method is based on the inexact restoration framework, by means of23211891213CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPERJ - FUNDAÇÃO CARLOS CHAGAS FILHO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)CNPq [E-26/171.164/2003-APQ1]FAPESP [FAPESP 2011-51305-0]FAPESP [03/09169-6, 06/53768-0, 07/06663-0, 08/00468-4]E-26/171.164/2003–APQ12011-51305-0; 03/09169-6; 06/53768-0; 07/06663-0; 08/00468-4sem informaçãoWe are indebted to associate editor Prof. Margaret Wright and two anonymous referees for many useful comments and remarks that led to significant improvement of this pape

    Hybridizing the electromagnetism-like algorithm with descent search for solving engineering design problems

    Get PDF
    In this paper, we present a new stochastic hybrid technique for constrained global optimization. It is a combination of the electromagnetism-like (EM) mechanism with a random local search, which is a derivative-free procedure with high ability of producing a descent direction. Since the original EM algorithm is specifically designed for solving bound constrained problems, the approach herein adopted for handling the inequality constraints of the problem relies on selective conditions that impose a sufficient reduction either in the constraints violation or in the objective function value, when comparing two points at a time. The hybrid EM method is tested on a set of benchmark engineering design problems and the numerical results demonstrate the effectiveness of the proposed approach. A comparison with results from other stochastic methods is also included
    corecore